
MATLAB®

Data Import and Export

R2020a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

MATLAB® Data Import and Export
© COPYRIGHT 2009–2020 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.
Revision History
September 2009 Online only New for MATLAB 7.9 (Release 2009b)
March 2010 Online only Revised for Version 7.10 (Release 2010a)
September 2010 Online only Revised for Version 7.11 (Release 2010b)
April 2011 Online only Revised for Version 7.12 (Release 2011a)
September 2011 Online only Revised for Version 7.13 (Release 2011b)
March 2012 Online only Revised for Version 7.14 (Release 2012a)
September 2012 Online only Revised for Version 8.0 (Release 2012b)
March 2013 Online only Revised for Version 8.1 (Release 2013a)
September 2013 Online only Revised for Version 8.2 (Release 2013b)
March 2014 Online only Revised for Version 8.3 (Release 2014a)
October 2014 Online only Revised for Version 8.4 (Release 2014b)
March 2015 Online only Revised for Version 8.5 (Release 2015a)
September 2015 Online only Revised for Version 8.6 (Release 2015b)
October 2015 Online only Rereleased for Version 8.5.1 (Release 2015aSP1)
March 2016 Online only Revised for Version 9.0 (Release 2016a)
September 2016 Online only Revised for Version 9.1 (Release 2016b)
March 2017 Online only Revised for Version 9.2 (Release 2017a)
September 2017 Online only Revised for Version 9.3 (Release 2017b)
March 2018 Online only Revised for Version 9.4 (Release 2018a)
September 2018 Online only Revised for Version 9.5 (Release 2018b)
March 2019 Online only Revised for Version 9.6 (Release 2019a)
September 2019 Online only Revised for Version 9.7 (Release 2019b)
March 2020 Online only Revised for Version 9.8 (Release 2020a)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

File Opening, Loading, and Saving
1

Supported File Formats for Import and Export . 1-2

Methods for Importing Data . 1-5
Tools that Import Multiple File Formats . 1-5
Importing Specific File Formats . 1-5
Importing Data with Low-Level I/O . 1-6

Import Images, Audio, and Video Interactively . 1-7
Viewing the Contents of a File . 1-7
Specifying Variables . 1-7
Generating Reusable MATLAB Code . 1-9

Import or Export a Sequence of Files . 1-10

Save and Load Parts of Variables in MAT-Files . 1-11
Save and Load Using the matfile Function . 1-11
Load Parts of Variables Dynamically . 1-12
Avoid Inadvertently Loading Entire Variables . 1-13
Partial Loading and Saving Requires Version 7.3 MAT-Files 1-13

MAT-File Versions . 1-15
Overview of MAT-File Versions . 1-15
Save to Nondefault MAT-File Version . 1-16
Data Compression . 1-16
Accelerate Save and Load Operations for Version 7.3 MAT-Files 1-17

Growing Arrays Using matfile Function . 1-18

Unexpected Results When Loading Variables Within a Function 1-20

Create Temporary Files . 1-22

Text Files
2

Import Text Files . 2-2
Import Text Files Using the Import Tool . 2-2
Import Text Files Using readtable . 2-2
Import Data from Text Files as Other Data Types 2-3

iii

Contents

Read Text File Data Using Import Tool . 2-4
Select Data Interactively . 2-4
Import Data from Multiple Text Files . 2-6

Import Dates and Times from Text Files . 2-8

Import Numeric Data from Text Files into Matrix 2-12
Import Comma-Separated Data . 2-12
Import Delimited Numeric Data . 2-12

Import Mixed Data from Text File into Table . 2-14

Import Block of Mixed Data from Text File into Table or Cell Array 2-17

Write Data to Text Files . 2-21
Export Table to Text File . 2-21
Export Cell Array to Text File . 2-22
Export Numeric Array to Text File . 2-23

Write to a Diary File . 2-24

Read Collection or Sequence of Text Files . 2-25

Import Block of Numeric Data from Text File . 2-28

Spreadsheets
3

Import Spreadsheets . 3-2
Import Spreadsheet Data Using the Import Tool . 3-2
Import Spreadsheet Data Using readtable . 3-2
Import Spreadsheet Data as Other Data Types . 3-3

Read Spreadsheet Data Using Import Tool . 3-4
Select Data Interactively . 3-4
Import Data from Multiple Spreadsheets . 3-5
Paste Data from Clipboard . 3-6

Read Spreadsheet Data into Array or Individual Variables 3-7

Read Spreadsheet Data into Table . 3-9

Read Collection or Sequence of Spreadsheet Files 3-12

Write Data to Excel Spreadsheets . 3-14
Write Tabular Data to Spreadsheet File . 3-14
Write Numeric and Text Data to Spreadsheet File 3-14
Disable Warning When Adding New Worksheet . 3-15
Format Cells in Excel Files . 3-15

Define Import Options for Tables . 3-17

iv Contents

Low-Level File I/O
4

Import Text Data Files with Low-Level I/O . 4-2
Overview . 4-2
Reading Data in a Formatted Pattern . 4-2
Reading Data Line-by-Line . 4-4
Testing for End of File (EOF) . 4-5
Opening Files with Different Character Encodings 4-7

Import Binary Data with Low-Level I/O . 4-8
Low-Level Functions for Importing Data . 4-8
Reading Binary Data in a File . 4-8
Reading Portions of a File . 4-10
Reading Files Created on Other Systems . 4-12

Export to Text Data Files with Low-Level I/O . 4-13
Write to Text Files Using fprintf . 4-13
Append To or Overwrite Existing Text Files . 4-14
Open Files with Different Character Encodings . 4-17

Export Binary Data with Low-Level I/O . 4-18
Low-Level Functions for Exporting Data . 4-18
Write Binary Data to a File . 4-18
Overwrite or Append to an Existing Binary File . 4-19
Create a File for Use on a Different System . 4-20
Write and Read Complex Numbers . 4-21

Internet of Things (IoT) Data
5

Aggregate Data in ThingSpeak Channel . 5-2

Regularize Irregularly Sampled Data . 5-3

Plot Data Read from ThingSpeak Channel . 5-4

Read ThingSpeak Data and Predict Battery Discharge Time with Linear
Fit . 5-5

Images
6

Importing Images . 6-2
Getting Information About Image Files . 6-2
Reading Image Data and Metadata from TIFF Files 6-3

v

Exporting to Images . 6-5
Exporting Image Data and Metadata to TIFF Files 6-5

Scientific Data
7

Import CDF Files Using Low-Level Functions . 7-2

Represent CDF Time Values . 7-4

Import CDF Files Using High-Level Functions . 7-5

Export to CDF Files . 7-8

Map NetCDF API Syntax to MATLAB Syntax . 7-11

Import NetCDF Files and OPeNDAP Data . 7-13
MATLAB NetCDF Capabilities . 7-13
Read from NetCDF File Using High-Level Functions 7-13
Find All Unlimited Dimensions in NetCDF File . 7-15
Read from NetCDF File Using Low-Level Functions 7-16

Resolve Errors Reading OPeNDAP Data . 7-19

Export to NetCDF Files . 7-20
MATLAB NetCDF Capabilities . 7-20
Create New NetCDF File From Existing File or Template 7-20
Merge Two NetCDF Files . 7-21
Write Data to NetCDF File Using Low-Level Functions 7-23

Importing Flexible Image Transport System (FITS) Files 7-26

Importing HDF5 Files . 7-27
Overview . 7-27
Using the High-Level HDF5 Functions to Import Data 7-27
Using the Low-Level HDF5 Functions to Import Data 7-32

Exporting to HDF5 Files . 7-33
Overview . 7-33
Using the MATLAB High-Level HDF5 Functions to Export Data 7-33
Using the MATLAB Low-Level HDF5 Functions to Export Data 7-34

Working with Non-ASCII Characters in HDF5 Files 7-40
Create Dataset and Attribute Names Containing Non-ASCII Characters . 7-40
Create Variable-Length String Data Containing Non-ASCII Characters . . 7-41

Import HDF4 Files Programmatically . 7-43
Overview . 7-43
Using the MATLAB HDF4 High-Level Functions 7-43

Map HDF4 to MATLAB Syntax . 7-46

vi Contents

Import HDF4 Files Using Low-Level Functions . 7-47

About HDF4 and HDF-EOS . 7-50

Export to HDF4 Files . 7-51
Write MATLAB Data to HDF4 File . 7-51
Manage HDF4 Identifiers . 7-52

Audio and Video
8

Read and Write Audio Files . 8-2

Record and Play Audio . 8-4
Record Audio . 8-4
Play Audio . 8-6
Record or Play Audio within a Function . 8-6

Read Video Files . 8-8

Supported Video and Audio File Formats . 8-12
Video Data in MATLAB . 8-12
Audio Data in MATLAB . 8-14

Convert Between Image Sequences and Video . 8-16

XML Documents
9

Importing XML Documents . 9-2
What Is an XML Document Object Model (DOM)? 9-2
Example — Finding Text in an XML File . 9-3

Exporting to XML Documents . 9-5
Creating an XML File . 9-5
Updating an Existing XML File . 9-6

Memory-Mapping Data Files
10

Overview of Memory-Mapping . 10-2
What Is Memory-Mapping? . 10-2
Benefits of Memory-Mapping . 10-2
When to Use Memory-Mapping . 10-3
Maximum Size of a Memory Map . 10-4
Byte Ordering . 10-4

vii

Map File to Memory . 10-5
Create a Simple Memory Map . 10-5
Specify Format of Your Mapped Data . 10-6
Map Multiple Data Types and Arrays . 10-6
Select File to Map . 10-8

Read from Mapped File . 10-9

Write to Mapped File . 10-14
Write to Memory Mapped as Numeric Array . 10-14
Write to Memory Mapped as Scalar Structure 10-15
Write to Memory Mapped as Nonscalar Structure 10-15
Syntaxes for Writing to Mapped File . 10-16
Work with Copies of Your Mapped Data . 10-17

Delete Memory Map . 10-19
Ways to Delete a Memory Map . 10-19
The Effect of Shared Data Copies On Performance 10-19

Share Memory Between Applications . 10-20

Internet File Access and JSON
11

Server Authentication . 11-2
Server Authentication For RESTful Web Services 11-2
Server Authentication For HTTP Web Services . 11-2

Proxy Server Authentication . 11-4
RESTful Web Services . 11-4
HTTP Web Services . 11-4
Use MATLAB Web Preferences For Proxy Server Settings 11-4
Use System Settings For Proxy Server Settings 11-5

MATLAB and Web Services Security . 11-6
MATLAB Does Not Verify Certificate Chains . 11-6

Download Data from Web Service . 11-7

Convert Data from Web Service . 11-10

Download Web Page and Files . 11-13
Example — Use the webread Function . 11-13
Example — Use the websave Function . 11-13

Call Web Services from Functions . 11-14
Error Messages Concerning Web Service Options 11-15

Send Email . 11-16

Perform FTP File Operations . 11-17

viii Contents

Display Hyperlinks in the Command Window . 11-19
Create Hyperlinks to Web Pages . 11-19
Transfer Files Using FTP . 11-19

Customize JSON Encoding for MATLAB Classes 11-20

Large Data
12

Getting Started with MapReduce . 12-3
What Is MapReduce? . 12-3
MapReduce Algorithm Phases . 12-3
Example MapReduce Calculation . 12-4

Write a Map Function . 12-9
Role of Map Function in MapReduce . 12-9
Requirements for Map Function . 12-10
Sample Map Functions . 12-10

Write a Reduce Function . 12-13
Role of the Reduce Function in MapReduce . 12-13
Requirements for Reduce Function . 12-14
Sample Reduce Functions . 12-14

Speed Up and Deploy MapReduce Using Other Products 12-17
Execution Environment . 12-17
Running in Parallel . 12-17
Application Deployment . 12-17

Build Effective Algorithms with MapReduce . 12-18

Debug MapReduce Algorithms . 12-20
Set Breakpoint . 12-20
Execute mapreduce . 12-20
Step Through Map Function . 12-21
Step Through Reduce Function . 12-22

Analyze Big Data in MATLAB Using MapReduce 12-25

Find Maximum Value with MapReduce . 12-32

Compute Mean Value with MapReduce . 12-35

Compute Mean by Group Using MapReduce . 12-38

Create Histograms Using MapReduce . 12-43

Simple Data Subsetting Using MapReduce . 12-50

Using MapReduce to Compute Covariance and Related Quantities . . . 12-56

ix

Compute Summary Statistics by Group Using MapReduce 12-61

Using MapReduce to Fit a Logistic Regression Model 12-67

Tall Skinny QR (TSQR) Matrix Factorization Using MapReduce 12-73

Compute Maximum Average HSV of Images with MapReduce 12-78

Getting Started with Datastore . 12-84
What Is a Datastore? . 12-84
Create and Read from a Datastore . 12-85

Select Datastore for File Format or Application 12-88
Datastores for Standard File Formats . 12-88
Datastores for Specific Applications . 12-88
Custom File Formats . 12-90
Nondeterministic Datastores . 12-90

Work with Remote Data . 12-91
Amazon S3 . 12-91
Microsoft Azure Storage Blob . 12-92
Hadoop Distributed File System . 12-94

Read and Analyze Large Tabular Text File . 12-96

Read and Analyze Image Files . 12-98

Read and Analyze MAT-File with Key-Value Data 12-102

Read and Analyze Hadoop Sequence File . 12-105

Develop Custom Datastore . 12-107
Overview . 12-107
Implement Datastore for Serial Processing . 12-108
Add Support for Parallel Processing . 12-110
Add Support for Hadoop . 12-111
Add Support for Shuffling . 12-112
Add Support for Writing Data . 12-113
Validate Custom Datastore . 12-115

Testing Guidelines for Custom Datastores . 12-116
Unit Tests . 12-116
Workflow Tests . 12-122
Next Steps . 12-123

Develop Custom Datastore for DICOM Data . 12-124
Developing Custom Datastores . 12-124
Class Definition . 12-124
Using the DICOMDatastore Class . 12-128

Set Up Datastore for Processing on Different Machines or Clusters . 12-130
Save Datastore and Load on Different File System Platform 12-130
Process Datastore Using Parallel and Distributed Computing 12-131

x Contents

Apache Parquet Data Type Mappings . 12-133
Numeric Data Types . 12-133
Text Data Types . 12-134
Date and Time Data Types . 12-134

Tall Arrays for Out-of-Memory Data . 12-136
What is a Tall Array? . 12-136
Benefits of Tall Arrays . 12-136
Creating Tall Tables . 12-136
Creating Tall Timetables . 12-137
Creating Tall Arrays . 12-138
Deferred Evaluation . 12-138
Evaluation with gather . 12-139
Saving, Loading, and Checkpointing Tall Arrays 12-140
Supporting Functions . 12-141

Deferred Evaluation of Tall Arrays . 12-142
Display of Unevaluated Tall Arrays . 12-142
Evaluation with gather . 12-143
Resolve Errors with gather . 12-143
Example: Calculate Size of Tall Array . 12-143
Example: Multi-pass Calculations with Tall Arrays 12-144
Summary of Behavior and Recommendations 12-146

Index and View Tall Array Elements . 12-147
Extract Top Rows of Array . 12-147
Extract Bottom Rows of Array . 12-147
Indexing Tall Arrays . 12-148
Extract Tall Table Variables . 12-150
Concatenation with Tall Arrays . 12-151
Assignment and Deletion with Tall Arrays . 12-152
Extract Specified Number of Rows in Sorted Order 12-152
Summarize Tall Array Contents . 12-153
Return Subset of Calculation Results . 12-154

Histograms of Tall Arrays . 12-156

Visualization of Tall Arrays . 12-161
Tall Array Plotting Examples . 12-162

Grouped Statistics Calculations with Tall Arrays 12-169

Extend Tall Arrays with Other Products . 12-175
Statistics and Machine Learning . 12-175
Control Where Your Code Runs . 12-175
Work with Databases . 12-176

Analyze Big Data in MATLAB Using Tall Arrays 12-177

Develop Custom Tall Array Algorithms . 12-186
Reasons to Implement Custom Algorithms . 12-186
Supported APIs . 12-186
Background: Tall Array Blocks . 12-187
Single-Step Transformation Operation . 12-188
Two-Step Reduction Operation . 12-190

xi

Sliding-Window Operations . 12-193
Control Output Data Type . 12-198
Coding and Performance Tips . 12-198

TCP/IP Support in MATLAB
13

TCP/IP Communication Overview . 13-2

Create a TCP/IP Connection . 13-3

Configure Properties for TCP/IP Communication 13-5

Write and Read Data over TCP/IP Interface . 13-7
Write Data . 13-7
Read Data . 13-7
Acquire Data from a Weather Station Server . 13-8
Read and Write uint8 Data . 13-8

Bluetooth Low Energy Communication
14

Bluetooth Low Energy Communication Overview 14-2
Prerequisites and Setup . 14-2
Bluetooth Low Energy Concepts . 14-2
Services, Characteristics, and Descriptors . 14-3

Find Your Bluetooth Low Energy Peripheral Devices 14-4
Scan for Devices . 14-4
Connect to a Device . 14-5

Work with Device Characteristics and Descriptors 14-7
Access Device Characteristics . 14-7
Access Device Descriptors . 14-10

Collect Data from Fitness Monitoring Devices . 14-12

Track Orientation of Bluetooth Low Energy Device 14-18

Troubleshooting Bluetooth Low Energy . 14-23
Supported Platforms . 14-23
Device Discovery and Connection . 14-23
Read and Write Data . 14-24

xii Contents

File Opening, Loading, and Saving

• “Supported File Formats for Import and Export” on page 1-2
• “Methods for Importing Data” on page 1-5
• “Import Images, Audio, and Video Interactively” on page 1-7
• “Import or Export a Sequence of Files” on page 1-10
• “Save and Load Parts of Variables in MAT-Files” on page 1-11
• “MAT-File Versions” on page 1-15
• “Growing Arrays Using matfile Function” on page 1-18
• “Unexpected Results When Loading Variables Within a Function” on page 1-20
• “Create Temporary Files” on page 1-22

1

Supported File Formats for Import and Export
The following table shows the file formats that you can import and export from the MATLAB
application.

In addition to the functions in the table, you also can use the Import Tool to import text or
spreadsheet file formats interactively.

File Content Extension Description Import Function Export Function
MATLAB formatted
data

MAT Saved MATLAB workspace load save
Partial access of variables in
MATLAB workspace

matfile matfile

Text any, including:
CSV
TXT

Comma delimited numbers readmatrix writematrix
Delimited numbers readmatrix writematrix
Delimited numbers, or a mix
of text and numbers

textscan none

Column-oriented delimited
numbers or a mix of text and
numbers

readtable

readcell

readvars

writetable

writecell

Spreadsheet XLS
XLSX
XLSM

XLSB (Systems
with Microsoft®

Excel® for
Windows® only)

XLTM (import
only)
XLTX (import
only)

ODS (Systems
with Microsoft
Excel for
Windows only)

Column-oriented data in
worksheet or range of
spreadsheet

readmatrix

readtable

readcell

readvars

writematrix

writetable

writecell

Extensible Markup
Language

XML XML-formatted text xmlread xmlwrite

Data Acquisition
Toolbox™ file

DAQ Data Acquisition Toolbox daqread none

Scientific data CDF Common Data Format See “Common
Data Format”

See cdflib

FITS Flexible Image Transport
System

See “FITS Files” See “FITS Files”

1 File Opening, Loading, and Saving

1-2

File Content Extension Description Import Function Export Function
HDF Hierarchical Data Format,

version 4, or HDF-EOS v. 2
See “HDF4 Files” See “HDF4 Files”

H5 HDF or HDF-EOS, version 5 See “HDF5 Files” See “HDF5 Files”
NC Network Common Data Form

(netCDF)
See “NetCDF
Files”

See “NetCDF
Files”

Image BMP Windows Bitmap imread imwrite
GIF Graphics Interchange

Format
HDF Hierarchical Data Format
JPEG
JPG

Joint Photographic Experts
Group

JP2
JPF
JPX
J2C
J2K

JPEG 2000

PBM Portable Bitmap
PCX Paintbrush
PGM Portable Graymap
PNG Portable Network Graphics
PNM Portable Any Map
PPM Portable Pixmap
RAS Sun™ Raster
TIFF
TIF

Tagged Image File Format

XWD X Window Dump
CUR Windows Cursor resources imread none
ICO Windows Icon resources

Audio (all platforms) AU
SND

NeXT/Sun sound audioread audiowrite

AIFF Audio Interchange File
Format

AIFC Audio Interchange File
Format, with compression
codecs

FLAC Free Lossless Audio Codec
OGG Ogg Vorbis
WAV Microsoft WAVE sound

Audio (Windows) M4A
MP4

MPEG-4 audioread audiowrite

 Supported File Formats for Import and Export

1-3

File Content Extension Description Import Function Export Function
any Formats supported by

Microsoft Media Foundation
audioread none

Audio (Mac) M4A
MP4

MPEG-4 audioread audiowrite

Audio (Linux®) any Formats supported by
GStreamer

audioread none

Video (all platforms) AVI Audio Video Interleave VideoReader VideoWriter
MJ2 Motion JPEG 2000

Video (Windows) MPG MPEG-1 VideoReader none
ASF
ASX
WMV

Windows Media®

any Formats supported by
Microsoft DirectShow®

Video (Windows 7 or
later)

MP4
M4V

MPEG-4 VideoReader VideoWriter

MOV QuickTime VideoReader none
any Formats supported by

Microsoft Media Foundation
Video (Mac) MP4

M4V
MPEG-4 VideoReader VideoWriter

MPG MPEG-1 VideoReader none
MOV QuickTime
any Formats supported by

QuickTime,
including .3gp, .3g2,
and .dv

Video (Linux) any Formats supported by your
installed GStreamer plug-ins,
including .ogg

VideoReader none

Triangulation STL Stereolithography stlread stlwrite

You can use web services such as a RESTful or WSDL to read and write data in an internet media
type format such as JSON, XML, image, or text. For more information, see:

• “Web Access”
• “WSDL (Web Services Description Language)”

1 File Opening, Loading, and Saving

1-4

Methods for Importing Data
In this section...
“Tools that Import Multiple File Formats” on page 1-5
“Importing Specific File Formats” on page 1-5
“Importing Data with Low-Level I/O” on page 1-6

Caution When you import data into the MATLAB workspace, the new variables you create overwrite
any existing variables in the workspace that have the same name.

Tools that Import Multiple File Formats
You can import data into MATLAB from a disk file or the system clipboard interactively.

To import data from a file, do one of the following:

•
On the Home tab, in the Variable section, select Import Data .

• Double-click a file name in the Current Folder browser.
• Call uiimport.

To import data from the clipboard, do one of the following:

• On the Workspace browser title bar, click , and then select Paste.
• Call uiimport.

To import without invoking a graphical user interface, the easiest option is to use the importdata
function.

For a complete list of the formats you can import interactively or with importdata, see “Supported
File Formats for Import and Export” on page 1-2.

Importing Specific File Formats
MATLAB includes functions tailored to import specific file formats. Consider using format-specific
functions instead of importing data interactively when you want to import only a portion of a file.
Many of the format-specific functions provide options for selecting ranges or portions of data. Some
format-specific functions allow you to request multiple optional outputs. This option is not available
when you import interactively.

For a complete list of the format-specific functions, see “Supported File Formats for Import and
Export” on page 1-2.

For binary data files, consider “Overview of Memory-Mapping” on page 10-2. Memory-mapping
enables you to access file data using standard MATLAB indexing operations.

Alternatively, MATLAB toolboxes perform specialized import operations. For example, use Database
Toolbox™ software for importing data from relational databases. Refer to the documentation on
specific toolboxes to see the available import features.

 Methods for Importing Data

1-5

Importing Data with Low-Level I/O
If the Import Wizard, importdata, and format-specific functions cannot read your data, use low-level
I/O functions such as fscanf or fread. Low-level functions allow the most control over reading from
a file, but require detailed knowledge of the structure of your data. For more information, see:

• “Import Text Data Files with Low-Level I/O” on page 4-2
• “Import Binary Data with Low-Level I/O” on page 4-8

1 File Opening, Loading, and Saving

1-6

Import Images, Audio, and Video Interactively
Import data interactively into MATLAB workspace.

In this section...
“Viewing the Contents of a File” on page 1-7
“Specifying Variables” on page 1-7
“Generating Reusable MATLAB Code” on page 1-9

Note For information on importing text files, see “Read Text File Data Using Import Tool” on page 2-
4. For information on importing spreadsheets, see “Read Spreadsheet Data Using Import Tool” on
page 3-4.

Viewing the Contents of a File

Start the Import Wizard by selecting Import Data or calling uiimport.

To view images or video, or to listen to audio, click the Back button on the first window that the
Import Wizard displays.

The right pane of the new window includes a preview tab. Click the button in the preview tab to show
an image or to play audio or video.

Specifying Variables
The Import Wizard generates default variable names based on the format and content of your data.
You can change the variables in any of the following ways:

 Import Images, Audio, and Video Interactively

1-7

• “Renaming or Deselecting Variables” on page 1-8
• “Importing to a Structure Array” on page 1-8

The default variable name for data imported from the system clipboard is A_pastespecial.

If the Import Wizard detects a single variable in a file, the default variable name is the file name.
Otherwise, the Import Wizard uses default variable names that correspond to the output fields of the
importdata function. For more information on the output fields, see the importdata function
reference page.

Renaming or Deselecting Variables

To override the default variable name, select the name and type a new one.

To avoid importing a particular variable, clear the check box in the Import column.

Importing to a Structure Array

To import data into fields of a structure array rather than as individual variables, start the Import
Wizard by calling uiimport with an output argument. For example, the sample file durer.mat
contains three variables: X, caption, and map. If you issue the command

durerStruct = uiimport('durer.mat')

and click the Finish button, the Import Wizard returns a scalar structure with three fields:

durerStruct =
 X: [648x509 double]
 map: [128x3 double]
 caption: [2x28 char]

To access a particular field, use dot notation. For example, view the caption field:

disp(durerStruct.caption)

MATLAB returns:

Albrecht Durer's Melancolia.
Can you find the matrix?

For more information, see “Access Data in Structure Array”.

1 File Opening, Loading, and Saving

1-8

Generating Reusable MATLAB Code
To create a function that reads similar files without restarting the Import Wizard, select the
Generate MATLAB code check box. When you click Finish to complete the initial import operation,
MATLAB opens an Editor window that contains an unsaved function. The default function name is
importfile.m or importfileN.m, where N is an integer.

The function in the generated code includes the following features:

• For text files, if you request vectors from rows or columns, the generated code also returns
vectors.

• When importing from files, the function includes an input argument for the name of the file to
import, fileToRead1.

• When importing into a structure array, the function includes an output argument for the name of
the structure, newData1.

However, the generated code has the following limitations:

• If you rename or deselect any variables in the Import Wizard, the generated code does not reflect
those changes.

• If you do not import into a structure array, the generated function creates variables in the base
workspace. If you plan to call the generated function from within your own function, your function
cannot access these variables. To allow your function to access the data, start the Import Wizard
by calling uiimport with an output argument. Call the generated function with an output
argument to create a structure array in the workspace of your function.

MATLAB does not automatically save the function. To save the file, select Save. For best results, use
the function name with a .m extension for the file name.

See Also
VideoReader | audioread | imread

More About
• “Read Video Files” on page 8-8
• “Read and Write Audio Files” on page 8-2
• “Importing Images” on page 6-2

 Import Images, Audio, and Video Interactively

1-9

Import or Export a Sequence of Files
To import or export multiple files, create a control loop to process one file at a time. When
constructing the loop:

• To build sequential file names, use sprintf.
• To find files that match a pattern, use dir.
• Use function syntax to pass the name of the file to the import or export function. (For more

information, see “Command vs. Function Syntax”.)

For example, to read files named file1.txt through file20.txt with importdata:

numfiles = 20;
mydata = cell(1, numfiles);

for k = 1:numfiles
 myfilename = sprintf('file%d.txt', k);
 mydata{k} = importdata(myfilename);
end

To read all files that match *.jpg with imread:

jpegFiles = dir('*.jpg');
numfiles = length(jpegFiles);
mydata = cell(1, numfiles);

for k = 1:numfiles
 mydata{k} = imread(jpegFiles(k).name);
end

1 File Opening, Loading, and Saving

1-10

Save and Load Parts of Variables in MAT-Files
In this section...
“Save and Load Using the matfile Function” on page 1-11
“Load Parts of Variables Dynamically” on page 1-12
“Avoid Inadvertently Loading Entire Variables” on page 1-13
“Partial Loading and Saving Requires Version 7.3 MAT-Files” on page 1-13

You can save and load parts of variables directly in MAT-files without loading them into memory using
the matfile function. The primary advantage of using the matfile function over the load or save
functions is that you can process parts of very large data sets that are otherwise too large to fit in
memory. When working with these large variables, read and write as much data into memory as
possible at a time. Otherwise, repeated file access can negatively impact the performance of your
code.

Save and Load Using the matfile Function
This example shows how to load, modify, and save part of a variable in an existing MAT-file using the
matfile function.

Create a Version 7.3 MAT-file with two variables, A and B.

A = rand(5);
B = magic(10);
save example.mat A B -v7.3;
clear A B

Construct a MatFile object from the MAT-file, example.mat. The matfile function creates a
MatFile object that corresponds to the MAT-file and contains the properties of the MatFile object.
By default, matfile only permits loading from existing MAT-files.

exampleObject = matfile('example.mat');

To enable saving, call matfile with the Writable parameter.

exampleObject = matfile('example.mat','Writable',true);

Alternatively, construct the object and set Properties.Writable in separate steps.

exampleObject = matfile('example.mat');
exampleObject.Properties.Writable = true;

Load the first row of B from example.mat into variable firstRowB and modify the data. When you
index into objects associated with Version 7.3 MAT-files, MATLAB® loads only the part of the variable
that you specify.

firstRowB = exampleObject.B(1,:);
firstRowB = 2 * firstRowB;

Update the values in the first row of variable B in example.mat using the values stored in
firstRowB.

exampleObject.B(1,:) = firstRowB;

 Save and Load Parts of Variables in MAT-Files

1-11

For very large files, the best practice is to read and write as much data into memory as possible at a
time. Otherwise, repeated file access negatively impacts the performance of your code. For example,
suppose that your file contains many rows and columns, and that loading a single row requires most
of the available memory. Rather than updating one element at a time, update each row.

[nrowsB,ncolsB] = size(exampleObject,'B');
for row = 1:nrowsB
 exampleObject.B(row,:) = row * exampleObject.B(row,:);
end

If memory is not a concern, you can update the entire contents of a variable at a time.

exampleObject.B = 10 * exampleObject.B;

Alternatively, update a variable by calling the save function with the -append option. The -append
option requests that the save function replace only the specified variable, B, and leave other
variables in the file intact. This method always requires that you load and save the entire variable.

load('example.mat','B');
B(1,:) = 2 * B(1,:);
save('example.mat','-append','B');

Add a variable to the file using the matlab.io.MatFile object.

exampleObject.C = magic(8);

You also can add the variable by calling the save function with the -append option.

C = magic(8);
save('example.mat','-append','C');
clear C

Load Parts of Variables Dynamically
This example shows how to access parts of variables from a MAT-file dynamically. This is useful when
working with MAT-files whose variables names are not always known.

Consider the example MAT-file, topography.mat, that contains one or more arrays with unknown
names. Construct a MatFile object that corresponds to the file, topography.mat. Call who to get
the variable names in the file.

exampleObject = matfile('topography.mat');
varlist = who(exampleObject)

varlist = 4x1 cell
 {'topo' }
 {'topolegend'}
 {'topomap1' }
 {'topomap2' }

varlist is a cell array containing the names of the four variables in topography.mat.

The third and fourth variables, topomap1 and topomap2, are both arrays containing topography
data. Load the elevation data from the third column of each variable into a field of the structure array,
S. For each field, specify a field name that is the original variable name prefixed by elevationOf_.

1 File Opening, Loading, and Saving

1-12

Then, access the data in each variable as properties of exampleObject. Because varName is a
variable, enclose it in parentheses.

for index = 3:4
 varName = varlist{index};
 S(1).(['elevationOf_',varName]) = exampleObject.(varName)(:,3);
end

View the contents of the structure array, S.

S

S = struct with fields:
 elevationOf_topomap1: [64x1 double]
 elevationOf_topomap2: [128x1 double]

S has two fields, elevationOf_topomap1 and elevationOf_topomap2, each containing a column
vector.

Avoid Inadvertently Loading Entire Variables
When you do not know the size of a large variable in a MAT-file and want to load only parts of that
variable at a time, avoid using the end keyword. Using the end keyword temporarily loads the entire
contents of the variable in question into memory. For very large variables, loading takes a long time
or generates Out of Memory errors. Instead, call the size method for MatFile objects.

For example, this code temporarily loads the entire contents of B in memory:

lastColB = exampleObject.B(:,end);

Use this code instead to improve performance:

[nrows,ncols] = size(exampleObject,'B');
lastColB = exampleObject.B(:,ncols);

Similarly, any time you refer to a variable with syntax of the form matObj.varName, such as
exampleObject.B, MATLAB temporarily loads the entire variable into memory. Therefore, make
sure to call the size method for MatFile objects with syntax such as:

[nrows,ncols] = size(exampleObject,'B');

rather than passing the entire contents of exampleObject.B to the size function,

[nrows,ncols] = size(exampleObject.B);

The difference in syntax is subtle, but significant.

Partial Loading and Saving Requires Version 7.3 MAT-Files
Any load or save operation that uses a MatFile object associated with a Version 7 or earlier MAT-file
temporarily loads the entire variable into memory.

Use the matfile function to create files in Version 7.3 format. For example, this code

newfile = matfile('newfile.mat');

 Save and Load Parts of Variables in MAT-Files

1-13

creates a MAT-file that supports partial loading and saving.

However, by default, the save function creates Version 7 MAT-files. Convert existing MAT-files to
Version 7.3 by calling the save function with the -v7.3 option, such as:

load('durer.mat');
save('mycopy_durer.mat','-v7.3');

To change your preferences to save new files in Version 7.3 format, access the Environment section
on the Home tab, and click Preferences. Select MATLAB > General > MAT-Files. This
preference is not available in MATLAB Online™.

See Also
load | matfile | save

More About
• “Save and Load Workspace Variables”
• “Growing Arrays Using matfile Function” on page 1-18
• “MAT-File Versions” on page 1-15

1 File Opening, Loading, and Saving

1-14

MAT-File Versions

In this section...
“Overview of MAT-File Versions” on page 1-15
“Save to Nondefault MAT-File Version” on page 1-16
“Data Compression” on page 1-16
“Accelerate Save and Load Operations for Version 7.3 MAT-Files” on page 1-17

Overview of MAT-File Versions
MAT-files are binary MATLAB files that store workspace variables. Starting with MAT-file Version 4,
there are several subsequent versions of MAT-files that support an increasing set of features.
MATLAB releases R2006b and later all support all MAT-file versions.

By default, all save operations create Version 7 MAT-files. The only exception to this is when you
create new MAT-files using the matfile function. In this case, the default MAT-file version is 7.3.

To identify or change the default MAT-file version, access the MAT-Files Preferences.

• On the Home tab, in the Environment section, click Preferences.
• Select MATLAB > General > MAT-Files.

The preferences apply to both the save function and the Save menu options.

The maximum size of a MAT-file is imposed only by your native file system.

This table lists and compares all MAT-file versions.

MAT-File
Version

Supporte
d MATLAB
Releases

Supported Features Compressi
on

Maximum
Size of
Each
Variable

Value of
version
argument
in save
function

Preference
Option

Version 7.3 R2006b
(Version
7.3) or
later

Saving and loading
parts of variables, and
all Version 7 features

Yes ≥ 2 GB on
64-bit
computers

'-v7.3' MATLAB
Version 7.3
or later
(save -v7.3)

Version 7 R14
(Version
7.0) or
later

Unicode® character
encoding, which
enables file sharing
between systems that
use different default
character encoding
schemes, and all
Version 6 features.

Yes 2^31 bytes
per variable

'-v7' MATLAB
Version 7 or
later
(save -v7)

 MAT-File Versions

1-15

MAT-File
Version

Supporte
d MATLAB
Releases

Supported Features Compressi
on

Maximum
Size of
Each
Variable

Value of
version
argument
in save
function

Preference
Option

Version 6 R8
(Version 5)
or later

N-dimensional arrays,
cell arrays, structure
arrays, variable
names longer than 19
characters, and all
Version 4 features.

No 2^31 bytes
per variable

'-v6' MATLAB
Version 5 or
later
(save -v6)

Version 4 All Two-dimensional
double, character,
and sparse arrays

No 100,000,000
elements per
array, and
2^31 bytes
per variable

'-v4' n/a

Note Version 7.3 MAT-files use an HDF5 based format that requires some overhead storage to
describe the contents of the file. For cell arrays, structure arrays, or other containers that can store
heterogeneous data types, Version 7.3 MAT-files are sometimes larger than Version 7 MAT-files.

Save to Nondefault MAT-File Version
Save to a MAT-file version other than the default version when you want to:

• Allow access to the file using earlier versions of MATLAB.
• Take advantage of Version 7.3 MAT-file features.
• Reduce the time required to load and save some files by storing uncompressed data.
• Reduce the size of some files by storing compressed data.

To save to a MAT-file version other than the default version, specify a version as the last input to the
save function. For example, to create a Version 6 MAT-file named myfile.mat, type:

save('myfile.mat','-v6')

Data Compression
Beginning with Version 7, MATLAB compresses data when writing to MAT-files to save storage space.
Data compression and decompression slow down all save operations and some load operations. In
most cases, the reduction in file size is worth the additional time spent.

In some cases, loading compressed data actually can be faster than loading uncompressed data. For
example, consider a block of data in a numeric array saved to both a 10 MB compressed file and a
100 MB uncompressed file. Loading the first 10 MB takes the same amount of time for each file.
Loading the remaining 90 MB from the uncompressed file takes nine times as long as loading the first
10 MB. Completing the load of the compressed file requires only the relatively short time to
decompress the data.

The benefits of data compression are negligible in the following cases:

1 File Opening, Loading, and Saving

1-16

• The amount of data in each item is small relative to the complexity of its container. For example,
simple numeric arrays take less time to compress and uncompress than cell or structure arrays of
the same size. Compressing arrays that result in an uncompressed file size of less than 3 MB
offers limited benefit, unless you are transferring data over a network.

• The data is random, with no repeated patterns or consistent values.

Accelerate Save and Load Operations for Version 7.3 MAT-Files
Version 7.3 MAT-files use an HDF5-based format that stores data in compressed chunks. The time
required to load part of a variable from a Version 7.3 MAT-file depends on how that data is stored
across one or more chunks. Each chunk that contains any portion of the data you want to load must
be fully uncompressed to access the data. Rechunking your data can improve the performance of the
load operation. To rechunk data, use the HDF5 command-line tools, which are part of the HDF5
distribution.

See Also
matfile | save

More About
• “Save and Load Workspace Variables”

 MAT-File Versions

1-17

Growing Arrays Using matfile Function
When writing a large number of large values to a MAT-file, the size of the file increases in a
nonincremental way. This method of increase is expected. To minimize the number of times the file
must grow and ensure optimal performance though, assign initial values to the array prior to
populating it with data.

For example, suppose that you have a writable MatFile object.

fileName = 'matFileOfDoubles.mat';
matObj = matfile(fileName);
matObj.Properties.Writable = true;

Define parameters of the values to write. In this case, write one million values, fifty thousand at a
time. The values should have a mean of 123.4, and a standard deviation of 56.7.

size = 1000000;
chunk = 50000;
mean = 123.4;
std = 56.7;

Assign an initial value of zero to the last element in the array prior to populating it with data.

matObj.data(1,size) = 0;

View the size of the file.

• On Windows systems, use dir.

system('dir matFileOfDoubles.mat');
• On UNIX® systems, use ls -ls:

system('ls -ls matFileOfDoubles.mat');

In this case, matFileOfDoubles.mat is less than 5000 bytes. Assigning an initial value to the last
element of the array does not create a large file. It does, however, prepare your system for the
potentially large size increase of matFileOfDoubles.mat.

Write data to the array, one chunk at a time.

nout = 0;
while(nout < size)
 fprintf('Writing %d of %d\n',nout,size);
 chunkSize = min(chunk,size-nout);
 data = mean + std * randn(1,chunkSize);
 matObj.data(1,(nout+1):(nout+chunkSize)) = data;
 nout = nout + chunkSize;
end

View the size of the file.

system('dir matFileOfDoubles.mat');

The file size is now larger because the array is populated with data.

See Also
matfile

1 File Opening, Loading, and Saving

1-18

More About
• “Save and Load Parts of Variables in MAT-Files” on page 1-11

 Growing Arrays Using matfile Function

1-19

Unexpected Results When Loading Variables Within a Function
If you have a function that loads data from a MAT-file and find that MATLAB does not return the
expected results, check whether any variables in the MAT-file share the same name as a MATLAB
function. Common variable names that conflict with function names include i, j, mode, char, size,
and path.

These unexpected results occur because when you execute a function, MATLAB preprocesses all the
code in the function before running it. However, calls to load are not preprocessed, meaning
MATLAB has no knowledge of the variables in your MAT-file. Variables that share the same name as
MATLAB functions are, therefore, preprocessed as MATLAB functions, causing the unexpected
results. This is different from scripts, which MATLAB preprocesses and executes line by line, similar
to the Command Window.

For example, consider a MAT-file with variables height, width, and length. If you load these
variables in a function such as findVolume, MATLAB interprets the reference to length as a call to
the MATLAB length function, and returns an error.

function vol = findVolume(myfile)
 load(myfile);
 vol = height * width * length;
end

Error using length
Not enough input arguments.

To avoid confusion, when defining your function, choose one (or more) of these approaches:

• Load the variables into a structure array. For example:

function vol = findVolume(myfile)
 dims = load(myfile);
 vol = dims.height * dims.width * dims.length;
end

• Explicitly include the names of variables in the call to the load function. For example:

function vol = findVolume(myfile)
 load(myfile,'height','width','length')
 vol = height * width * length;
end

• Initialize the variables within the function before calling load. To initialize a variable, assign it to
an empty matrix or an empty character vector. For example:

function vol = findVolume(myfile)
 height = [];
 width = [];
 length = [];
 load(myfile);
 vol = height * width * length;

To determine whether a particular variable name is associated with a MATLAB function, use the
exist function. A return value of 5 determines that the name is a built-in MATLAB function.

See Also
load

1 File Opening, Loading, and Saving

1-20

More About
• “Save and Load Workspace Variables”

 Unexpected Results When Loading Variables Within a Function

1-21

Create Temporary Files
Use the tempdir function to return the name of the folder designated to hold temporary files on your
system. For example, issuing tempdir on The Open Group UNIX systems returns the /tmp folder.

Use the tempname function to return a file name in the temporary folder. The returned file name is a
suitable destination for temporary data. For example, if you need to store some data in a temporary
file, then you might issue the following command first:

fileID = fopen(tempname,'w');

In most cases, tempname generates a universally unique identifier (UUID). However, if you run
MATLAB without JVM™, then tempname generates a random name using the CPU counter and time,
and this name is not guaranteed to be unique.

Some systems delete temporary files every time you reboot the system. On other systems, designating
a file as temporary means only that the file is not backed up.

1 File Opening, Loading, and Saving

1-22

Text Files

• “Import Text Files” on page 2-2
• “Read Text File Data Using Import Tool” on page 2-4
• “Import Dates and Times from Text Files” on page 2-8
• “Import Numeric Data from Text Files into Matrix” on page 2-12
• “Import Mixed Data from Text File into Table” on page 2-14
• “Import Block of Mixed Data from Text File into Table or Cell Array” on page 2-17
• “Write Data to Text Files” on page 2-21
• “Write to a Diary File” on page 2-24
• “Read Collection or Sequence of Text Files” on page 2-25
• “Import Block of Numeric Data from Text File” on page 2-28

2

Import Text Files
Text files often contain a mix of numeric and text data as well as variable and row names, which is
best represented in MATLAB as a table. You can import tabular data from text files into a table using
the Import Tool or the readtable function.

Import Text Files Using the Import Tool
The Import Tool allows you to import into a table or other data type. For example, read a subset of
data from the sample file airlinesmall.csv. Open the file using the Import Tool and select
options such as the range of data to import and the output type. Then, click on the Import Selection

button to import the data into the MATLAB workspace.

Import Text Files Using readtable
Alternatively, you can read tabular data from a text file into a table using the readtable function
with the file name, for example:

T = readtable('airlinesmall.csv');

Display the first five rows and columns from the table.

T(1:5,1:5)

ans =

2 Text Files

2-2

 5×5 table

 Year Month DayofMonth DayOfWeek DepTime
 ____ _____ __________ _________ ________

 1987 10 21 3 {'642' }
 1987 10 26 1 {'1021'}
 1987 10 23 5 {'2055'}
 1987 10 23 5 {'1332'}
 1987 10 22 4 {'629' }

Import Data from Text Files as Other Data Types
In addition to tables, you can import tabular data from a text file into the MATLAB workspace as a
timetable, a numeric matrix, a cell array, or separate column vectors. Based on the data type you
need, use one of these functions.

Data Type of Output Function
Timetable readtimetable
Numeric Matrix readmatrix
Cell Array readcell
Separate Column Vectors readvars

See Also
Import Tool | readtable

More About
• “Read Text File Data Using Import Tool” on page 2-4
• “Import Mixed Data from Text File into Table” on page 2-14
• “Access Data in Tables”

 Import Text Files

2-3

Read Text File Data Using Import Tool
In this section...
“Select Data Interactively” on page 2-4
“Import Data from Multiple Text Files” on page 2-6

Import data from a text file by selecting data interactively. You also can repeat this import operation
on multiple text files by using the generate code feature of the import tool.

Select Data Interactively
This example shows how to import data from a text file with column headers and numeric data using
the Import Tool. The file in the example, grades.txt, contains this data:

 John Ann Mark Rob
 88.4 91.5 89.2 77.3
 83.2 88.0 67.8 91.0
 77.8 76.3 92.5
 92.1 96.4 81.2 84.6

To create the file, copy and paste the data using any text editor.

On the Home tab, in the Variable section, click Import Data . Alternatively, right-click the
name of the file in the Current Folder browser and select Import Data. The Import Tool opens.

The Import Tool recognizes that grades.txt is a fixed width file. In the Imported Data section,
select how you want the data to be imported. The following table indicates how data is imported
depending on the option you select.

2 Text Files

2-4

Option Selected How Data is Imported
Table Import selected data as a table.
Column vectors Import each column of the selected data as an

individual m-by-1 vector.
Numeric Matrix Import selected data as an m-by-n numeric array.
String Array Import selected data as a string array that

contains text.
Cell Array Import selected data as a cell array that can

contain multiple data types, such as numeric data
and text.

Under Delimiter Options, you can specify whether the Import Tool should use a period or a comma
as the decimal separator for numeric values.

Double-click a variable name to rename it.

You also can use the Variable Names Row box in the Selection section to select the row in the text
file that you want the Import Tool to use for variable names.

The Import Tool highlights unimportable cells. Unimportable cells are cells that contain data that
cannot be imported in the format specified for that column. In this example, the cell at row 3, column
C, is considered unimportable because a blank cell is not numeric. Highlight colors correspond to

 Read Text File Data Using Import Tool

2-5

proposed rules to make the data fit into a numeric array. You can add, remove, reorder, or edit rules,
such as changing the replacement value from NaN to another value.

All rules apply to the imported data only and do not change the data in the file. Any time you are
importing into a matrix or into numeric column vectors and the range includes non-numeric data,
then you must specify the rules.

To see how your data is imported, place the cursor over individual cells.

When you click the Import Selection button , the Import Tool creates variables in your
workspace.

For more information on interacting with the Import Tool, watch this video.

Import Data from Multiple Text Files
To perform the same import operation on multiple files, use the code generation feature of the Import
Tool. If you import a file one time and generate code from the Import Tool, you can use this code to
make it easier to repeat the operation. The Import Tool generates a program script that you can edit
and run to import the files, or a function that you can call for each file.

Suppose you have a set of text files in the current folder. The files are named myfile01.txt through
myfile25.txt, and you want to import the data from each file, starting from the second row.
Generate code to import the entire set of files as follows:

1 Open one of the files in the Import Tool.
2 Click Import Selection , and then select Generate Function. The Import Tool generates code

similar to the following excerpt, and opens the code in the Editor.

function data = importfile(filename,startRow,endRow)
%IMPORTFILE Import numeric data from a text file as a matrix.
...

2 Text Files

2-6

https://www.mathworks.com/videos/import-tool-enhancements-for-text-files-101466.html

3 Save the function.
4 In a separate program file or at the command line, create a for loop to import data from each

text file into a cell array named myData:

numFiles = 25;
startRow = 2;
endRow = inf;
myData = cell(1,numFiles);

for fileNum = 1:numFiles
 fileName = sprintf('myfile%02d.txt',fileNum);
 myData{fileNum} = importfile(fileName,startRow,endRow);
end

Each cell in myData contains an array of data from the corresponding text file. For example,
myData{1} contains the data from the first file, myfile01.txt.

See Also
readcell | readmatrix | readtable | readtimetable | readvars | textscan

More About
• “Import Text Files” on page 2-2

 Read Text File Data Using Import Tool

2-7

Import Dates and Times from Text Files
Import formatted dates and times (such as '01/01/01' or '12:30:45') from column oriented
tabular data in three ways.

• Import Tool — Interactively select and import dates and times.
• readtable function — Automatically detect variables with dates and times and import them into

a table.
• Import Options — Use readtable with detectImportOptions function for more control over

importing date and time variables. For example, you can specify properties such as FillValue
and DatetimeFormat.

This example shows you how to import dates and times from text files using each of these methods.

Import Tool

Open the file outages.csv using the Import Tool. Specify the formats of dates and times using the
drop-down menu for each column. You can select from a predefined date format, or enter a custom
format. To import the OutageTime column, specify the custom format yyyy-MM-dd HH:mm. Then,
click the Import Selection button to import the data into the workspace.

2 Text Files

2-8

readtable Function

Use the readtable function and display 10 rows of the OutageTime variable. readtable
automatically detects the date time variables and formats.

filename = 'outages.csv';
T = readtable(filename);
T.OutageTime(1:10)

ans = 10x1 datetime
 2002-02-01 12:18
 2003-01-23 00:49
 2003-02-07 21:15
 2004-04-06 05:44
 2002-03-16 06:18
 2003-06-18 02:49

 Import Dates and Times from Text Files

2-9

 2004-06-20 14:39
 2002-06-06 19:28
 2003-07-16 16:23
 2004-09-27 11:09

Import Options

Use an import options object for more control over importing date and time variables. For example,
change the date-time display format or specify a fill value for missing dates.

Create an import options object for the outages.csv file and display the variable import options for
the variable RestorationTime. The detectImportOptions function automatically detects the
data types of the variables.

opts = detectImportOptions(filename);
getvaropts(opts,'RestorationTime')

ans =
 DatetimeVariableImportOptions with properties:

 Variable Properties:
 Name: 'RestorationTime'
 Type: 'datetime'
 FillValue: NaT
 TreatAsMissing: {}
 QuoteRule: 'remove'
 Prefixes: {}
 Suffixes: {}
 EmptyFieldRule: 'missing'

 Datetime Options:
 DatetimeFormat: 'default'
 DatetimeLocale: 'en_US'
 InputFormat: ''
 TimeZone: ''

Import the data and display the first 10 rows of the variable RestorationTime. The second row
contains a NaT, indicating a missing date and time value.

T = readtable(filename,opts);
T.RestorationTime(1:10)

ans = 10x1 datetime
 2002-02-07 16:50
 NaT
 2003-02-17 08:14
 2004-04-06 06:10
 2002-03-18 23:23
 2003-06-18 10:54
 2004-06-20 19:16
 2002-06-07 00:51
 2003-07-17 01:12
 2004-09-27 16:37

2 Text Files

2-10

To use a different date-time display format, update the DatetimeFormat property, and then replace
missing values with the current date and time by using the FillValue property. Display the updated
variable options.

opts = setvaropts(opts,'RestorationTime', ...
 'DatetimeFormat','MMMM d, yyyy HH:mm:ss Z',...
 'FillValue','now');
getvaropts(opts,'RestorationTime')

ans =
 DatetimeVariableImportOptions with properties:

 Variable Properties:
 Name: 'RestorationTime'
 Type: 'datetime'
 FillValue: February 29, 2020 03:49:21 *
 TreatAsMissing: {}
 QuoteRule: 'remove'
 Prefixes: {}
 Suffixes: {}
 EmptyFieldRule: 'missing'

 Datetime Options:
 DatetimeFormat: 'MMMM d, yyyy HH:mm:ss Z'
 DatetimeLocale: 'en_US'
 InputFormat: ''
 TimeZone: ''

Read the data with the updated import options and display the first 10 rows of the variable.

T = readtable(filename,opts);
T.RestorationTime(1:10)

ans = 10x1 datetime
 2002-02-07 16:50
 2020-02-29 03:49
 2003-02-17 08:14
 2004-04-06 06:10
 2002-03-18 23:23
 2003-06-18 10:54
 2004-06-20 19:16
 2002-06-07 00:51
 2003-07-17 01:12
 2004-09-27 16:37

For more information on the datetime variable options, see the setvaropts reference page.

See Also
Import Tool | detectImportOptions | readcell | readmatrix | readtable | readtimetable |
readvars | setvaropts

More About
• “Import Mixed Data from Text File into Table” on page 2-14

 Import Dates and Times from Text Files

2-11

Import Numeric Data from Text Files into Matrix
Import numeric data as MATLAB arrays from files stored as comma-separated or delimited text files.

Import Comma-Separated Data
This example shows how to import comma-separated numeric data from a text file. Create a sample
file, read all the data in the file, and then read only a subset starting from a specified location.

Create a sample file named ph.dat that contains comma-separated data and display the contents of
the file.

A = 0.9*gallery('integerdata',99,[3 4],1);
writematrix(A,'ph.dat','Delimiter',',')
type('ph.dat')

85.5,54,74.7,34.2
63,75.6,46.8,80.1
85.5,39.6,2.7,38.7

Read the file using the readmatrix function. The function returns a 3-by-4 double array containing
the data from the file.

M = readmatrix('ph.dat')

M = 3×4

 85.5000 54.0000 74.7000 34.2000
 63.0000 75.6000 46.8000 80.1000
 85.5000 39.6000 2.7000 38.7000

Import only the rectangular portion of data starting from the first row and third column in the file.
Create an import options object and specify the columns and rows to import using the
SelectedVariableNames and DataLines properties. Then, import the selected portion of the data
from the file.

opts = detectImportOptions('ph.dat');
opts.SelectedVariableNames = {'Var3','Var4'};
opts.DataLines = [1 3];
readmatrix('ph.dat',opts)

ans = 3×2

 74.7000 34.2000
 46.8000 80.1000
 2.7000 38.7000

Import Delimited Numeric Data
This example shows how to import numeric data delimited by any single character using the
writematrix function. Create a sample file, read the entire file, and then read a subset of the file
starting at the specified location.

2 Text Files

2-12

Create a tab-delimited file named num.txt that contains a 4-by-4 numeric array and display the
contents of the file.

A = gallery('integerdata',99,[4,4],0);
writematrix(A,'num.txt','Delimiter','\t')
type('num.txt')

95 89 82 92
23 76 45 74
61 46 61 18
49 2 79 41

Read the entire file. The readmatrix function determines the delimiter automatically and returns a
4-by-4 double array.

M = readmatrix('num.txt')

M = 4×4

 95 89 82 92
 23 76 45 74
 61 46 61 18
 49 2 79 41

Read only the rectangular block of data beginning from the second row, third column, in the file.
Create an import options object and specify the columns and rows to import using the
SelectedVariableNames and DataLines properties. Then, import the selected portion of the data
from the file.

opts = detectImportOptions('num.txt');
opts.SelectedVariableNames = {'Var3','Var4'};
opts.DataLines = [2 4];
readmatrix('num.txt',opts)

ans = 3×2

 45 74
 61 18
 79 41

See Also
readcell | readmatrix | readtimetable | readvars

More About
• “Import Text Files” on page 2-2

 Import Numeric Data from Text Files into Matrix

2-13

Import Mixed Data from Text File into Table
This example shows how to use the readtable function to import mixed text and numeric data into a
table, specify the data types for the variables, and then append a new variable to the table.

Sample File Overview

The sample file, outages.csv, contains data representing electric utility outages in the US. The first
few lines of the file are:

Region,OutageTime,Loss,Customers,RestorationTime,Cause

SouthWest,2002-01-20 11:49,672,2902379,2002-01-24 21:58,winter storm

SouthEast,2002-01-30 01:18,796,336436,2002-02-04 11:20,winter storm

SouthEast,2004-02-03 21:17,264.9,107083,2004-02-20 03:37,winter storm

West,2002-06-19 13:39,391.4,378990,2002-06-19 14:27,equipment fault

Read Text File

Import the data using readtable and display the first five rows. The readtable function
automatically detects the delimiter and the variable types.

T = readtable('outages.csv');
head(T,5) % show first 5 rows of table

ans=5×6 table
 Region OutageTime Loss Customers RestorationTime Cause
 _____________ ________________ ______ __________ ________________ ___________________

 {'SouthWest'} 2002-02-01 12:18 458.98 1.8202e+06 2002-02-07 16:50 {'winter storm' }
 {'SouthEast'} 2003-01-23 00:49 530.14 2.1204e+05 NaT {'winter storm' }
 {'SouthEast'} 2003-02-07 21:15 289.4 1.4294e+05 2003-02-17 08:14 {'winter storm' }
 {'West' } 2004-04-06 05:44 434.81 3.4037e+05 2004-04-06 06:10 {'equipment fault'}
 {'MidWest' } 2002-03-16 06:18 186.44 2.1275e+05 2002-03-18 23:23 {'severe storm' }

Specify Variable Data Types Before Import

Updating the variable data types to the appropriate MATLAB data types can benefit your data, based
on the type of variables in your file. For example, the first and sixth columns in outages.csv are
categorical. By designating these two columns as categorical arrays you can leverage MATLAB
functions for processing categorical data.

Designate and specify the data types of the variables in one of these ways:

• Specify the Format name-value pair in readtable
• Set the VariableTypes property of the import options for the file

Use the Format name-value pair to specify the variable data types, read the data, and display the
first five rows. In the %{yyyy-MM-dd HH:mm}D part of the formatSpec specifier, the text between
the curly braces describes the format of the date and time data. The values specified in Format
designate the:

2 Text Files

2-14

• First and last columns in the file as categorical data
• Second and fifth columns as formatted date and time data
• Third and fourth columns as floating-point values

formatSpec = '%C%{yyyy-MM-dd HH:mm}D%f%f%{yyyy-MM-dd HH:mm}D%C';
T = readtable('outages.csv','Format',formatSpec);
head(T,5)

ans=5×6 table
 Region OutageTime Loss Customers RestorationTime Cause
 _________ ________________ ______ __________ ________________ _______________

 SouthWest 2002-02-01 12:18 458.98 1.8202e+06 2002-02-07 16:50 winter storm
 SouthEast 2003-01-23 00:49 530.14 2.1204e+05 NaT winter storm
 SouthEast 2003-02-07 21:15 289.4 1.4294e+05 2003-02-17 08:14 winter storm
 West 2004-04-06 05:44 434.81 3.4037e+05 2004-04-06 06:10 equipment fault
 MidWest 2002-03-16 06:18 186.44 2.1275e+05 2002-03-18 23:23 severe storm

Alternatively, specify the data types for the variables by using the setvartype function of the import
options. First, create an import options object for the file. The data file contains different types of
variables. Designate the first and last variables as categorical arrays, the second and fifth
variables as datetime arrays, and the remaining variables as double.

opts = detectImportOptions('outages.csv');
varNames = opts.VariableNames ; % variable names
varTypes = {'categorical','datetime','double',...
 'double','datetime','categorical'};
opts = setvartype(opts,varNames,varTypes);

Import the data using readtable with opts, and then display the first five rows.

T = readtable('outages.csv',opts);
head(T,5)

ans=5×6 table
 Region OutageTime Loss Customers RestorationTime Cause
 _________ ________________ ______ __________ ________________ _______________

 SouthWest 2002-02-01 12:18 458.98 1.8202e+06 2002-02-07 16:50 winter storm
 SouthEast 2003-01-23 00:49 530.14 2.1204e+05 NaT winter storm
 SouthEast 2003-02-07 21:15 289.4 1.4294e+05 2003-02-17 08:14 winter storm
 West 2004-04-06 05:44 434.81 3.4037e+05 2004-04-06 06:10 equipment fault
 MidWest 2002-03-16 06:18 186.44 2.1275e+05 2002-03-18 23:23 severe storm

Append New Variable to Table

Table T contains OutageTime and RestorationTime. Calculate the duration of each electrical
outage and append this data to the table.

T.Duration = T.RestorationTime - T.OutageTime;
head(T,5)

ans=5×7 table
 Region OutageTime Loss Customers RestorationTime Cause Duration
 _________ ________________ ______ __________ ________________ _______________ _________

 Import Mixed Data from Text File into Table

2-15

 SouthWest 2002-02-01 12:18 458.98 1.8202e+06 2002-02-07 16:50 winter storm 148:32:00
 SouthEast 2003-01-23 00:49 530.14 2.1204e+05 NaT winter storm NaN
 SouthEast 2003-02-07 21:15 289.4 1.4294e+05 2003-02-17 08:14 winter storm 226:59:00
 West 2004-04-06 05:44 434.81 3.4037e+05 2004-04-06 06:10 equipment fault 00:26:00
 MidWest 2002-03-16 06:18 186.44 2.1275e+05 2002-03-18 23:23 severe storm 65:05:00

See Also
detectImportOptions | head | preview | readtable | readtimetable | setvaropts |
setvartype

More About
• “Create and Work with Tables”
• “Import Dates and Times from Text Files” on page 2-8
• “Access Data in Tables”

2 Text Files

2-16

Import Block of Mixed Data from Text File into Table or Cell
Array

This example reads a block of mixed text and numeric data from a text file, and then imports the
block of data into a table or a cell array.

Data File Overview

The sample file bigfile.txt contains commented lines beginning with ##. The data is arranged in
five columns: The first column contains text indicating timestamps. The second, third, and fourth
columns contain numeric data indicating temperature, humidity and wind speed. The last column
contains descriptive text. Display the contents of the file bigfile.txt.

type('bigfile.txt')

A ID = 02476
YKZ Timestamp Temp Humidity Wind Weather
06-Sep-2013 01:00:00 6.6 89 4 clear
06-Sep-2013 05:00:00 5.9 95 1 clear
06-Sep-2013 09:00:00 15.6 51 5 mainly clear
06-Sep-2013 13:00:00 19.6 37 10 mainly clear
06-Sep-2013 17:00:00 22.4 41 9 mostly cloudy
06-Sep-2013 21:00:00 17.3 67 7 mainly clear
B ID = 02477
YVR Timestamp Temp Humidity Wind Weather
09-Sep-2013 01:00:00 15.2 91 8 clear
09-Sep-2013 05:00:00 19.1 94 7 n/a
09-Sep-2013 09:00:00 18.5 94 4 fog
09-Sep-2013 13:00:00 20.1 81 15 mainly clear
09-Sep-2013 17:00:00 20.1 77 17 n/a
09-Sep-2013 18:00:00 20.0 75 17 n/a
09-Sep-2013 21:00:00 16.8 90 25 mainly clear
C ID = 02478
YYZ Timestamp Temp Humidity Wind Weather

Import Block of Data as Table

To import the data as a table, use readtable with import options.

Create an import options object for the file using the detectImportOptions function. Specify the
location of the data using the DataLines property. For example, lines 3 through 8 contain the first
block of data. Optionally, you can specify the names of the variables using the VariableNames
property. Finally import the first block of data using readtable with the opts object.

opts = detectImportOptions('bigfile.txt');
opts.DataLines = [3 8];
opts.VariableNames = {'Timestamp','Temp',...
 'Humidity','Wind','Weather'};
T_first = readtable('bigfile.txt',opts)

T_first=6×5 table
 Timestamp Temp Humidity Wind Weather
 ____________________ ____ ________ ____ _________________

 06-Sep-2013 01:00:00 6.6 89 4 {'clear' }
 06-Sep-2013 05:00:00 5.9 95 1 {'clear' }

 Import Block of Mixed Data from Text File into Table or Cell Array

2-17

 06-Sep-2013 09:00:00 15.6 51 5 {'mainly clear' }
 06-Sep-2013 13:00:00 19.6 37 10 {'mainly clear' }
 06-Sep-2013 17:00:00 22.4 41 9 {'mostly cloudy'}
 06-Sep-2013 21:00:00 17.3 67 7 {'mainly clear' }

Read the second block by updating the DataLines property to the location of the second block.

opts.DataLines = [11 17];
T_second = readtable('bigfile.txt',opts)

T_second=7×5 table
 Timestamp Temp Humidity Wind Weather
 ____________________ ____ ________ ____ ________________

 09-Sep-2013 01:00:00 15.2 91 8 {'clear' }
 09-Sep-2013 05:00:00 19.1 94 7 {'n/a' }
 09-Sep-2013 09:00:00 18.5 94 4 {'fog' }
 09-Sep-2013 13:00:00 20.1 81 15 {'mainly clear'}
 09-Sep-2013 17:00:00 20.1 77 17 {'n/a' }
 09-Sep-2013 18:00:00 20 75 17 {'n/a' }
 09-Sep-2013 21:00:00 16.8 90 25 {'mainly clear'}

Import Block of Data as Cell Array

You can import the data as cell array using the readcell function with detectImportOptions, or
by using the textscan function. First import the block of data using the readcell function and then
perform the same import by using textscan.

To perform the import using the readcell function, create an import options object for the file using
the detectImportOptions function. Specify the location of the data using the DataLines property.
Then, perform the import operation using the readcell function and import options object opts.

opts = detectImportOptions('bigfile.txt');
opts.DataLines = [3 8]; % fist block of data
C = readcell('bigfile.txt',opts)

C=6×5 cell array
 Columns 1 through 4

 {[06-Sep-2013 01:00:00]} {[6.6000]} {[89]} {[4]}
 {[06-Sep-2013 05:00:00]} {[5.9000]} {[95]} {[1]}
 {[06-Sep-2013 09:00:00]} {[15.6000]} {[51]} {[5]}
 {[06-Sep-2013 13:00:00]} {[19.6000]} {[37]} {[10]}
 {[06-Sep-2013 17:00:00]} {[22.4000]} {[41]} {[9]}
 {[06-Sep-2013 21:00:00]} {[17.3000]} {[67]} {[7]}

 Column 5

 {'clear' }
 {'clear' }
 {'mainly clear' }
 {'mainly clear' }
 {'mostly cloudy'}
 {'mainly clear' }

2 Text Files

2-18

To perform the import using the textscan function, specify the size of block using N and the format
of the data fields using formatSpec. For example, use '%s' for text variables, '%D' for date and
time variables, or '%c' for categorical variables. Use fopen to open the file. The function then
returns a file identifier, fileID. Next, read from the file by using the textscan function.

N = 6;
formatSpec = '%D %f %f %f %c';
fileID = fopen('bigfile.txt');

Read the first block and display the contents of the variable Humidity.

C_first = textscan(fileID,formatSpec,N,'CommentStyle','##','Delimiter','\t')

C_first=1×5 cell array
 Columns 1 through 4

 {6x1 datetime} {6x1 double} {6x1 double} {6x1 double}

 Column 5

 {6x1 char}

C_first{3}

ans = 6×1

 89
 NaN
 95
 NaN
 51
 NaN

Update the block size N, and read the second block. Display the contents of the fifth variable
Weather.

N = 7;
C_second = textscan(fileID,formatSpec,N,'CommentStyle','##','Delimiter','\t')

C_second=1×5 cell array
 Columns 1 through 4

 {7x1 datetime} {7x1 double} {7x1 double} {7x1 double}

 Column 5

 {7x1 char}

C_second{5}

ans = 7x1 char array
 'm'
 '...'
 'm'
 '...'
 'm'

 Import Block of Mixed Data from Text File into Table or Cell Array

2-19

 '...'
 'c'

Close the file.

fclose(fileID);

See Also
detectImportOptions | fopen | readcell | readtable | textscan

More About
• “Access Data in Cell Array”
• “Moving within a File” on page 4-10

2 Text Files

2-20

Write Data to Text Files
In this section...
“Export Table to Text File” on page 2-21
“Export Cell Array to Text File” on page 2-22
“Export Numeric Array to Text File” on page 2-23

Export tabular data contained in tables, cell arrays, or numeric arrays from the MATLAB workspace
to text files.

Export Table to Text File
You can export tabular data from MATLAB® workspace into a text file using the writetable
function. Create a sample table, write the table to text file, and then write the table to text file with
additional options.

Create a sample table, T, containing the variables Pitch, Shape, Price and Stock.

Pitch = [0.7;0.8;1;1.25;1.5];
Shape = {'Pan';'Round';'Button';'Pan';'Round'};
Price = [10.0;13.59;10.50;12.00;16.69];
Stock = [376;502;465;1091;562];
T = table(Pitch,Shape,Price,Stock)

T=5×4 table
 Pitch Shape Price Stock
 _____ __________ _____ _____

 0.7 {'Pan' } 10 376
 0.8 {'Round' } 13.59 502
 1 {'Button'} 10.5 465
 1.25 {'Pan' } 12 1091
 1.5 {'Round' } 16.69 562

Export the table, T, to a text file named tabledata.txt. View the contents of the file. By default,
writetable writes comma-separated data, includes table variable names as column headings.

writetable(T,'tabledata.txt');
type tabledata.txt

Pitch,Shape,Price,Stock
0.7,Pan,10,376
0.8,Round,13.59,502
1,Button,10.5,465
1.25,Pan,12,1091
1.5,Round,16.69,562

Create a table T2 which includes row names using the RowNames name-value pair argument.

rowNames = {'M4';'M5';'M6';'M8';'M10'};
T2 = table(Pitch,Shape,Price,Stock,'RowNames',rowNames)

T2=5×4 table
 Pitch Shape Price Stock

 Write Data to Text Files

2-21

 _____ __________ _____ _____

 M4 0.7 {'Pan' } 10 376
 M5 0.8 {'Round' } 13.59 502
 M6 1 {'Button'} 10.5 465
 M8 1.25 {'Pan' } 12 1091
 M10 1.5 {'Round' } 16.69 562

Export T2 to a tab-delimited text file named tabledata2.txt. Use the Delimiter name-value pair
argument to specify a tab delimiter, and the WriteRowNames name-value pair argument to include
row names. View the contents of the file.

writetable(T2,'tabledata2.txt','Delimiter','\t','WriteRowNames',true);
type tabledata2.txt

Row Pitch Shape Price Stock
M4 0.7 Pan 10 376
M5 0.8 Round 13.59 502
M6 1 Button 10.5 465
M8 1.25 Pan 12 1091
M10 1.5 Round 16.69 562

Export Cell Array to Text File
You can export a cell array from MATLAB® workspace into a text file in one of these ways:

• Use the writecell function to export the cell array to a text file.
• Use fprintf to export the cell array by specifying the format of the output data.

Create a sample cell array C.

C = {'Atkins',32,77.3,'M';'Cheng',30,99.8,'F';'Lam',31,80.2,'M'}

C = 3×4 cell array
 {'Atkins'} {[32]} {[77.3000]} {'M'}
 {'Cheng' } {[30]} {[99.8000]} {'F'}
 {'Lam' } {[31]} {[80.2000]} {'M'}

Export the cell array using writecell.

writecell(C,'data.dat')

View the contents of the file.

type data.dat

Atkins,32,77.3,M
Cheng,30,99.8,F
Lam,31,80.2,M

Alternatively, import the cell array using fprintf. Open a file that you can write to named
celldata.dat. Define formatSpec using the format specifiers to describe the pattern of the data in
the file. Typical format specifiers include '%s' for a character vector, '%d' for an integer, or '%f'
for a floating-point number. Separate each format specifier with a space to indicate a space delimiter
for the output file. Include a newline character at the end of each row of data ('\n').

2 Text Files

2-22

fileID = fopen('celldata.dat','w');
formatSpec = '%s %d %2.1f %s\n';

Determine the size of C and export one row of data at a time using the fprintf function. Then close
the file. fprintf writes a space-delimited file.

[nrows,ncols] = size(C);
for row = 1:nrows
 fprintf(fileID,formatSpec,C{row,:});
end
fclose(fileID);

View the contents of the file.

type celldata.dat

Atkins 32 77.3 M
Cheng 30 99.8 F
Lam 31 80.2 M

Export Numeric Array to Text File
You can export a numerical array to a text file using writematrix.

Create a numeric array A.

A = magic(5)/10

A = 5×5

 1.7000 2.4000 0.1000 0.8000 1.5000
 2.3000 0.5000 0.7000 1.4000 1.6000
 0.4000 0.6000 1.3000 2.0000 2.2000
 1.0000 1.2000 1.9000 2.1000 0.3000
 1.1000 1.8000 2.5000 0.2000 0.9000

Write the numeric array to myData.dat and specify the delimiter to be ';'. Then, view the contents
of the file.

writematrix(A,'myData.dat','Delimiter',';')
type myData.dat

1.7;2.4;0.1;0.8;1.5
2.3;0.5;0.7;1.4;1.6
0.4;0.6;1.3;2;2.2
1;1.2;1.9;2.1;0.3
1.1;1.8;2.5;0.2;0.9

See Also
fprintf | type | writecell | writematrix | writetable | writetimetable

 Write Data to Text Files

2-23

Write to a Diary File
To keep an activity log of your MATLAB session, use the diary function. diary creates a verbatim
copy of your MATLAB session in a disk file (excluding graphics).

For example, if you have the array A in your workspace,

A = [1 2 3 4; 5 6 7 8];

execute these commands at the MATLAB prompt to export this array using diary:

1 Turn on the diary function. Optionally, you can name the output file diary creates:

diary my_data.out
2 Display the contents of the array you want to export. This example displays the array A. You could

also display a cell array or other MATLAB class:

A =
 1 2 3 4
 5 6 7 8

3 Turn off the diary function:

diary off

diary creates the file my_data.out and records all the commands executed in the MATLAB
session until you turn it off:

A =

 1 2 3 4
 5 6 7 8

diary off
4 Open the diary file my_data.out in a text editor and remove the extraneous text, if desired.

2 Text Files

2-24

Read Collection or Sequence of Text Files
When your data is stored across multiple text files, you can use tabularTextDatastore to manage
and import the data. This example shows how to use tabularTextDatastore to read the data from
the collection of text files all together, or to read one file at a time.

Data

For this example, the folder C:\DataTxt contains a collection of text files. Capture this location in
the variable location. The data contains 10 text files, where each file contains 10 rows of data. The
results differ based on your files and data.

location = 'C:\DataTxt';
dir(location)

. File01.csv File03.csv File05.csv File07.csv File09.csv

.. File02.csv File04.csv File06.csv File08.csv File10.csv

Create Datastore

Create a datastore using the location of the files.

ds = tabularTextDatastore(location)

ds =
 TabularTextDatastore with properties:

 Files: {
 'C:\DataTxt\File01.csv';
 'C:\DataTxt\File02.csv';
 'C:\DataTxt\File03.csv'
 ... and 7 more
 }
 FileEncoding: 'UTF-8'
 AlternateFileSystemRoots: {}
 ReadVariableNames: true
 VariableNames: {'LastName', 'Gender', 'Age' ... and 7 more}
 DatetimeLocale: en_US

 Text Format Properties:
 NumHeaderLines: 0
 Delimiter: ','
 RowDelimiter: '\r\n'
 TreatAsMissing: ''
 MissingValue: NaN

 Advanced Text Format Properties:
 TextscanFormats: {'%q', '%q', '%f' ... and 7 more}
 TextType: 'char'
 ExponentCharacters: 'eEdD'
 CommentStyle: ''
 Whitespace: ' \b\t'
 MultipleDelimitersAsOne: false

 Properties that control the table returned by preview, read, readall:
 SelectedVariableNames: {'LastName', 'Gender', 'Age' ... and 7 more}
 SelectedFormats: {'%q', '%q', '%f' ... and 7 more}

 Read Collection or Sequence of Text Files

2-25

 ReadSize: 20000 rows

Read Data from Datastore

Use the read or readall functions to import the data from the datastore. If the data from the
collection fits in the memory, you can import it all at once using the readall function.

allData = readall(ds);
size(allData)

ans = 1×2

 100 10

Alternatively, import the data one file at a time using the read function. To control the amount of data
imported, before you call read, adjust the ReadSize property of the datastore. Set the ReadSize to
'file' or a positive integer.

• If ReadSize is 'file', then each call to read reads all the data one file at a time.
• If ReadSize is a positive integer, then each call to read reads the number of rows specified by

ReadSize, or fewer, if it reaches the end of the data.

ds.ReadSize = 'file';
firstFile = read(ds) % reads first file

firstFile=10×10 table
 LastName Gender Age Location Height Weight Smoker Systolic Diastolic SelfAssessedHealthStatus
 __________ ________ ___ ___________________________ ______ ______ _______ ________ _________ ________________________

 'Smith' 'Male' 38 'County General Hospital' 71 176 'TRUE' 124 93 'Excellent'
 'Johnson' 'Male' 43 'VA Hospital' 69 163 'FALSE' 109 77 'Fair'
 'Williams' 'Female' 38 'St. Mary's Medical Center' 64 131 'FALSE' 125 83 'Good'
 'Jones' 'Female' 40 'VA Hospital' 67 133 'FALSE' 117 75 'Fair'
 'Brown' 'Female' 49 'County General Hospital' 64 119 'FALSE' 122 80 'Good'
 'Davis' 'Female' 46 'St. Mary's Medical Center' 68 142 'FALSE' 121 70 'Good'
 'Miller' 'Female' 33 'VA Hospital' 64 142 'TRUE' 130 88 'Good'
 'Wilson' 'Male' 40 'VA Hospital' 68 180 'FALSE' 115 82 'Good'
 'Moore' 'Male' 28 'St. Mary's Medical Center' 68 183 'FALSE' 115 78 'Excellent'
 'Taylor' 'Female' 31 'County General Hospital' 66 132 'FALSE' 118 86 'Excellent'

secondFile = read(ds) % reads second file

secondFile=10×10 table
 LastName Gender Age Location Height Weight Smoker Systolic Diastolic SelfAssessedHealthStatus
 __________ ________ ___ ___________________________ ______ ______ _______ ________ _________ ________________________

 'Anderson' 'Female' 45 'County General Hospital' 68 128 'FALSE' 114 77 'Excellent'
 'Thomas' 'Female' 42 'St. Mary's Medical Center' 66 137 'FALSE' 115 68 'Poor'
 'Jackson' 'Male' 25 'VA Hospital' 71 174 'FALSE' 127 74 'Poor'
 'White' 'Male' 39 'VA Hospital' 72 202 'TRUE' 130 95 'Excellent'
 'Harris' 'Female' 36 'St. Mary's Medical Center' 65 129 'FALSE' 114 79 'Good'
 'Martin' 'Male' 48 'VA Hospital' 71 181 'TRUE' 130 92 'Good'
 'Thompson' 'Male' 32 'St. Mary's Medical Center' 69 191 'TRUE' 124 95 'Excellent'
 'Garcia' 'Female' 27 'VA Hospital' 69 131 'TRUE' 123 79 'Fair'
 'Martinez' 'Male' 37 'County General Hospital' 70 179 'FALSE' 119 77 'Good'

2 Text Files

2-26

 'Robinson' 'Male' 50 'County General Hospital' 68 172 'FALSE' 125 76 'Good'

See Also
readcell | readmatrix | readtable | readtimetable | readvars | tabularTextDatastore

More About
• “Read and Analyze Large Tabular Text File” on page 12-96

 Read Collection or Sequence of Text Files

2-27

Import Block of Numeric Data from Text File
This example shows how to read numeric data organized in blocks in a text file. Each block within the
file can have a different format. You can read all the blocks as cell arrays, one block at a time, using
textscan.

File Format Overview

The information in the sample text file, test80211.txt, is the result from a wireless network
communication quality test. The sample file consists of four lines of introduction followed by several
blocks of data. Each block represents a different environment (for example, mobile, indoor, outdoor)
and has the following format:

• Two header lines of description
• The text, Num SNR=, followed by a numeric value, m
• Numeric data organized in a table of m columns and an arbitrary number of rows (The data is

comma-delimited.)
• The text, *EOB, denoting the end of the block

For example, a block of data is formatted like this:

* Indoor2

* SNR Vs test No

Num SNR=3

,-5.00E+00,-4.00E+00,

1.00E+00,3.32E-07,9.12E-07

2.00E+00,1.49E-07,2.44E-07

3.00E+00,6.04E-07,2.53E-07

4.00E+00,1.53E-07,4.25E-07

5.00E+00,1.82E-07,1.83E-07

6.00E+00,6.27E-07,8.21E-07

7.00E+00,9.10E-08,1.53E-08

8.00E+00,8.73E-07,6.45E-07

9.00E+00,4.40E-07,1.33E-07

*EOB

The numeric data represents error rates over a range of noise levels for a number of independent
tests. The first column indicates the test number. To view the entire sample file, type at the command
line:

open test80211.txt

2 Text Files

2-28

Open Text File for Reading

Open the file and create a file identifier.

fileID = fopen('test80211.txt','r');

Read Introduction Lines

Read the four introductory lines, which contain text delimited by a newline character. textscan
returns a 1-by-1 cell array containing a 4-by-1 cell array of character vectors.

Intro = textscan(fileID,'%s',4,'Delimiter','\n')

Intro = 1x1 cell array
 {4x1 cell}

View the contents of the first cell.

disp(Intro{1})

 {'*CCX' }
 {'*CCX WiFi conformance test'}
 {'*CCX BER Results' }
 {'*CCX' }

Read Each Block

For each block, we want to read a header, the numeric value m, column headers for the data, then the
data itself. First, initialize the block index.

Block = 1;

Read each block of data in a while loop. The loop executes until the end of the file is reached and
~feof returns false. The textscan function returns the data in each block as a cell array named
InputText. Convert each cell array to a numeric array using cell2mat and store the numeric array
in a cell array named Data. A cell array allows the storage of different size blocks.

while (~feof(fileID)) % For each block:

 fprintf('Block: %s\n', num2str(Block)) % Print block number to the screen
 InputText = textscan(fileID,'%s',2,'delimiter','\n'); % Read 2 header lines
 HeaderLines{Block,1} = InputText{1};
 disp(HeaderLines{Block}); % Display header lines

 InputText = textscan(fileID,'Num SNR = %f'); % Read the numeric value
 % following the text, Num SNR =
 NumCols = InputText{1}; % Specify that this is the
 % number of data columns

 FormatString = repmat('%f',1,NumCols); % Create format string
 % based on the number
 % of columns
 InputText = textscan(fileID,FormatString, ... % Read data block
 'delimiter',',');

 Data{Block,1} = cell2mat(InputText);
 [NumRows,NumCols] = size(Data{Block}); % Determine size of table

 Import Block of Numeric Data from Text File

2-29

 disp(cellstr(['Table data size: ' ...
 num2str(NumRows) ' x ' num2str(NumCols)]));
 disp(' '); % New line

 eob = textscan(fileID,'%s',1,'delimiter','\n'); % Read and discard end-of-block marker
 Block = Block+1; % Increment block index
end

Block: 1
 {'* Mobile1' }
 {'* SNR Vs test No'}

 {'Table data size: 30 x 19'}

Block: 2
 {'* Mobile2' }
 {'* SNR Vs test No'}

 {'Table data size: 30 x 9'}

Block: 3
 {'* Mobile3' }
 {'* SNR Vs test No'}

 {'Table data size: 31 x 15'}

Block: 4
 {'* Mobile4' }
 {'* SNR Vs test No'}

 {'Table data size: 28 x 19'}

Block: 5
 {'* Mobile5' }
 {'* SNR Vs test No'}

 {'Table data size: 32 x 18'}

Block: 6
 {'* Mobile6' }
 {'* SNR Vs test No'}

 {'Table data size: 30 x 19'}

Block: 7
 {'* Mobile7' }
 {'* SNR Vs test No'}

 {'Table data size: 30 x 11'}

Block: 8

2 Text Files

2-30

 {'* Mobile8' }
 {'* SNR Vs test No'}

 {'Table data size: 20 x 18'}

Block: 9
 {'* Indoor0' }
 {'* SNR Vs test No'}

 {'Table data size: 9 x 3'}

Block: 10
 {'* Indoor1' }
 {'* SNR Vs test No'}

 {'Table data size: 22 x 6'}

Block: 11
 {'* Indoor2' }
 {'* SNR Vs test No'}

 {'Table data size: 25 x 3'}

Block: 12
 {'* Indoor3' }
 {'* SNR Vs test No'}

 {'Table data size: 21 x 18'}

Block: 13
 {'* Outdoor1' }
 {'* SNR Vs test No'}

 {'Table data size: 20 x 18'}

Block: 14
 {'* Outdoor2' }
 {'* SNR Vs test No'}

 {'Table data size: 23 x 3'}

Block: 15
 {'* Outdoor3' }
 {'* SNR Vs test No'}

 {'Table data size: 22 x 18'}

Block: 16
 {'* Outdoor4' }
 {'* SNR Vs test No'}

 Import Block of Numeric Data from Text File

2-31

 {'Table data size: 21 x 18'}

Block: 17
 {'* Outdoor5' }
 {'* SNR Vs test No'}

 {'Table data size: 18 x 5'}

Close Text File

fclose(fileID);

Total Number of Blocks

Determine the number of blocks in the file.

NumBlocks = Block-1

NumBlocks = 17

View Numeric Data

Display the numeric data in one of the blocks using short scientific notation.

First, store the current Command Window output display format.

user_format = get(0, 'format');

Change the display format to short scientific notation.

format shortE

Display the header lines for the ninth block and the numeric data.

Block = 9;
disp(HeaderLines{Block});

 {'* Indoor0' }
 {'* SNR Vs test No'}

fprintf('SNR %d %d\n',Data{Block,1}(1,2:end))

SNR -7 -6

disp(Data{Block,1}(2:end,2:end));

 9.0600e-07 6.7100e-07
 3.1700e-07 3.5400e-07
 2.8600e-07 1.9600e-07
 1.4800e-07 7.3400e-07
 3.9500e-08 9.6600e-07
 7.9600e-07 7.8300e-07
 4.0000e-07 8.8100e-07
 3.0100e-07 2.9700e-07

Restore the original Command Window output display format.

2 Text Files

2-32

set(0, 'format', user_format);

See Also
textscan

More About
• “Import Block of Mixed Data from Text File into Table or Cell Array” on page 2-17

 Import Block of Numeric Data from Text File

2-33

Spreadsheets

• “Import Spreadsheets” on page 3-2
• “Read Spreadsheet Data Using Import Tool” on page 3-4
• “Read Spreadsheet Data into Array or Individual Variables” on page 3-7
• “Read Spreadsheet Data into Table” on page 3-9
• “Read Collection or Sequence of Spreadsheet Files” on page 3-12
• “Write Data to Excel Spreadsheets” on page 3-14
• “Define Import Options for Tables” on page 3-17

3

Import Spreadsheets
Spreadsheets often contain a mix of numeric and text data as well as variable and row names, which
is best represented in MATLAB as a table. You can import data into a table using the Import Tool or
the readtable function.

Import Spreadsheet Data Using the Import Tool
The Import Tool allows you to import into a table or other data type. For example, read data from
the sample spreadsheet file patients.xls as a table in MATLAB. Open the file using the Import
Tool and select options such as the range of data and the output type. Then, click the Import

Selection button to import the data into the MATLAB workspace.

Import Spreadsheet Data Using readtable
Alternatively, you can read spreadsheet data into a table using the readtable function with the file
name, for example:

T = readtable('patients.xls');

You can also select the range of data to import by specifying the range parameter. For example, read
the first five rows and columns of the spreadsheet. Specify the range in Excel notation as 'A1:E5'.

T = readtable('patients.xls','Range','A1:E5')

3 Spreadsheets

3-2

T =

 4×5 table

 LastName Gender Age Location Height
 ____________ __________ ___ _____________________________ ______

 {'Smith' } {'Male' } 38 {'County General Hospital' } 71
 {'Johnson' } {'Male' } 43 {'VA Hospital' } 69
 {'Williams'} {'Female'} 38 {'St. Mary's Medical Center'} 64
 {'Jones' } {'Female'} 40 {'VA Hospital' } 67

Import Spreadsheet Data as Other Data Types
In addition to tables, you can import your spreadsheet data into the MATLAB workspace as a
timetable, a numeric matrix, a cell array, or separate column vectors. Based on the data type you
need, use one of these functions.

Data Type of Output Function
Timetable readtimetable
Numeric Matrix readmatrix
Cell Array readcell
Separate Column Vectors readvars

See Also
Import Tool | readtable

More About
• “Read Spreadsheet Data Using Import Tool” on page 3-4
• “Read Spreadsheet Data into Table” on page 3-9
• “Access Data in Tables”

 Import Spreadsheets

3-3

Read Spreadsheet Data Using Import Tool
In this section...
“Select Data Interactively” on page 3-4
“Import Data from Multiple Spreadsheets” on page 3-5
“Paste Data from Clipboard” on page 3-6

This example shows how to import data from a spreadsheet into the workspace using the Import Tool
and also to import data from the clipboard.

Select Data Interactively

On the Home tab, in the Variable section, click Import Data . Alternatively, in the Current
Folder browser, double-click the name of a file with an extension of .xls, .xlsx, .xlsb, or .xlsm.
The Import Tool opens.

Select the data you want to import. For example, the data in the following figure corresponds to data
for three column vectors. You can edit the variable name within the tab, and you can select
noncontiguous sections of data for the same variable.

On the Import tab, in the Output Type section, select how you want the data to be imported. The
option you select dictates the data type of the imported data.

Option Selected How Data Is Imported
Column vectors Import each column of the selected data as an

individual m-by-1 vector.
Numeric Matrix Import selected data as an m-by-n numeric array.
String Array Import selected data as an m-by-n string array.
Cell Array Import selected data as a cell array that can

contain multiple data types, such as numeric data
and text.

Table Import selected data as a table.

If you choose to import the data as a matrix or as numeric column vectors, the tool highlights any
nonnumeric data in the worksheet. Each highlight color corresponds to a proposed rule to make the
data fit into a numeric array. For example, you can replace nonnumeric values with NaN. Also, you can
see how your data will be imported when you place the cursor over individual cells.

3 Spreadsheets

3-4

You can add, remove, reorder, or edit rules, such as changing the replacement value from NaN to
another value. All rules apply to the imported data only and do not change the data in the file. Specify
rules any time the range includes nonnumeric data and you are importing into a matrix or numeric
column vectors.

Any cells that contain #Error? correspond to formula errors in your spreadsheet file, such as
division by zero. The Import Tool regards these cells as nonnumeric.

When you click the Import Selection button , the Import Tool creates variables in your
workspace.

For more information on interacting with the Import Tool, watch this video.

Import Data from Multiple Spreadsheets
If you plan to perform the same import operation on multiple files, you can generate code from the
Import Tool to make it easier to repeat the operation. On all platforms, the Import Tool can generate a
program script that you can edit and run to import the files. On Microsoft Windows systems with
Excel software, the Import Tool can generate a function that you can call for each file.

For example, suppose that you have a set of spreadsheets in the current folder named
myfile01.xlsx through myfile25.xlsx, and you want to import the same range of data,
A2:G100, from the first worksheet in each file. Generate code to import the entire set of files as
follows:

1 Open one of the files in the Import Tool.
2 From the Import Selection button, select Generate Function. The Import Tool generates code

similar to the following excerpt, and opens the code in the Editor.

function data = importfile(workbookFile, sheetName, range)
%IMPORTFILE Import numeric data from a spreadsheet
...

3 Save the function.
4 In a separate program file or at the command line, create a for loop to import data from each

spreadsheet into a cell array named myData:

numFiles = 25;
range = 'A2:G100';
sheet = 1;
myData = cell(1,numFiles);

for fileNum = 1:numFiles
 fileName = sprintf('myfile%02d.xlsx',fileNum);
 myData{fileNum} = importfile(fileName,sheet,range);
end

 Read Spreadsheet Data Using Import Tool

3-5

https://www.mathworks.com/videos/importing-spreadsheets-into-matlab-101491.html

Each cell in myData contains an array of data from the corresponding worksheet. For example,
myData{1} contains the data from the first file, myfile01.xlsx.

Paste Data from Clipboard
In addition to importing data interactively, you can also paste spreadsheet data from the clipboard
into MATLAB.

First, select and copy your spreadsheet data in Microsoft Excel, then use one of the following
methods:

• On the Workspace browser title bar, click , and then select Paste.
• Open an existing variable in the Variables editor, right-click, and then select Paste Excel Data.
• Call uiimport -pastespecial.

See Also
detectImportOptions | readcell | readmatrix | readtable | readvars

More About
• “Define Import Options for Tables” on page 3-17
• “Read Spreadsheet Data into Array or Individual Variables” on page 3-7

3 Spreadsheets

3-6

Read Spreadsheet Data into Array or Individual Variables
The best way to represent spreadsheet data in MATLAB® is in a table, which can store a mix of
numeric and text data. However, sometimes you need to import spreadsheet data as a matrix, a cell
array, or separate variables. Based on your data and the data type you need in the MATLAB®
workspace, use one of these functions:

• readmatrix — Import homogeneous numeric or text data as a matrix.
• readcell — Import mixed numeric and text data as a cell array.
• readvars — Import spreadsheet columns as separate variables.

Read Spreadsheet Data into Matrix

Import numeric data from basic_matrix.xls into a matrix.

M = readmatrix('basic_matrix.xls')

M = 5×4

 6 8 3 1
 5 4 7 3
 1 6 7 10
 4 2 8 2
 2 7 5 9

You can also select the data to import from the spreadsheet by specifying the Sheet and Range
parameters. For example, specify the Sheet parameter as 'Sheet1' and the Range parameter as
'B1:D3'. The readmatrix function reads a 3-by-3 subset of the data, starting at the element in the
first row and second column of the sheet named 'Sheet1'.

M = readmatrix('basic_matrix.xls','Sheet','Sheet1','Range','B1:D3')

M = 3×3

 8 3 1
 4 7 3
 6 7 10

Read Spreadsheet Data into Cell Array

Import the mixed tabular data from airlinesmall_subset.xlsx into a cell array.

C = readcell('airlinesmall_subset.xlsx');
whos C

 Name Size Bytes Class Attributes

 C 1339x29 4277290 cell

You can also select the data to import from the spreadsheet by specifying the Sheet and Range
parameters. For example, specify the Sheet parameter as '2007' and the Range parameter as
'G2:I11'. The readcell function imports ten rows of data for variables in columns 7, 8, and 9,
from the worksheet named '2007'.

subC = readcell('airlinesmall_subset.xlsx','Sheet','2007','Range','G2:I11')

 Read Spreadsheet Data into Array or Individual Variables

3-7

subC=10×3 cell array
 {[935]} {[935]} {'WN'}
 {[1041]} {[1040]} {'WN'}
 {[1430]} {[1500]} {'WN'}
 {[940]} {[950]} {'WN'}
 {[1515]} {[1515]} {'WN'}
 {[2042]} {[2035]} {'WN'}
 {[2116]} {[2130]} {'WN'}
 {[1604]} {[1605]} {'WN'}
 {[1258]} {[1230]} {'WN'}
 {[1134]} {[1145]} {'WN'}

Read Spreadsheet Data Columns as Separate Variables

Import the first three columns from airlinesmall_subset.xlsx as separate workspace variables.

[Year,Month,DayOfMonth] = readvars('airlinesmall_subset.xlsx');
whos Year Month DayOfMonth

 Name Size Bytes Class Attributes

 DayOfMonth 1338x1 10704 double
 Month 1338x1 10704 double
 Year 1338x1 10704 double

You can also select which subset to import from the spreadsheet by specifying the Sheet and Range
parameters. For example, import ten rows of the column DayOfMonth from the worksheet named
'2004'. Specify the column and number of rows using the Range parameter.

DayOfMonth = readvars('airlinesmall_subset.xlsx','Sheet','2004','Range','C2:C11')

DayOfMonth = 10×1

 26
 10
 21
 24
 20
 20
 1
 2
 30
 11

See Also
readcell | readmatrix | readtable | readvars

More About
• “Read Spreadsheet Data Using Import Tool” on page 3-4
• “Read Spreadsheet Data into Table” on page 3-9
• “Read Collection or Sequence of Spreadsheet Files” on page 3-12

3 Spreadsheets

3-8

Read Spreadsheet Data into Table
The best way to represent spreadsheet data in MATLAB® is in a table, which can store a mix of
numeric and text data, as well as variable and row names. You can read data into tables interactively
or programmatically. To interactively select data, click Import Data on the Home tab, in the
Variable section. To programmatically import data, use one of these functions:

• readtable — Read a single worksheet.
• spreadsheetDatastore — Read multiple worksheets or files.

This example shows how to import spreadsheet data programmatically using both functions. The
sample data, airlinesmall_subset.xlsx, contains one sheet for each year between 1996 and
2008. The sheet names correspond to the year, such as 2003.

Read All Data from Worksheet

Call readtable to read all the data in the worksheet called 2008, and then display only the first 10
rows and columns. Specify the worksheet name using the Sheet name-value pair argument. If your
data is on the first worksheet in the file, you do not need to specify Sheet.

T = readtable('airlinesmall_subset.xlsx','Sheet','2008');
T(1:10,1:10)

ans=10×10 table
 Year Month DayofMonth DayOfWeek DepTime CRSDepTime ArrTime CRSArrTime UniqueCarrier FlightNum
 ____ _____ __________ _________ _______ __________ _______ __________ _____________ _________

 2008 1 3 4 1012 1010 1136 1135 {'WN'} 752
 2008 1 4 5 1303 1300 1411 1415 {'WN'} 1161
 2008 1 6 7 2134 2115 2242 2220 {'WN'} 1830
 2008 1 7 1 1734 1655 54 30 {'WN'} 302
 2008 1 8 2 1750 1755 2018 2035 {'WN'} 1305
 2008 1 9 3 640 645 855 905 {'WN'} 896
 2008 1 10 4 1943 1945 2039 2040 {'WN'} 120
 2008 1 11 5 1303 1305 1401 1400 {'WN'} 1685
 2008 1 13 7 1226 1230 1415 1400 {'WN'} 1118
 2008 1 14 1 1337 1340 1623 1630 {'WN'} 730

Read Selected Range from Specific Worksheet

From the worksheet named 1996, read only 10 rows of data from the first 5 columns by specifying a
range, 'A1:E11'. The readtable function returns a 10-by-5 table.

T_selected = readtable('airlinesmall_subset.xlsx','Sheet','1996','Range','A1:E11')

T_selected=10×5 table
 Year Month DayofMonth DayOfWeek DepTime
 ____ _____ __________ _________ _______

 1996 1 18 4 2117
 1996 1 12 5 1252
 1996 1 16 2 1441
 1996 1 1 1 2258
 1996 1 4 4 1814
 1996 1 31 3 1822
 1996 1 18 4 729

 Read Spreadsheet Data into Table

3-9

 1996 1 26 5 1704
 1996 1 11 4 1858
 1996 1 7 7 2100

Convert Variables to Datetimes, Durations, or Categoricals

During the import process, readtable automatically detects the data types of the variables.
However, if your data contains nonstandard dates, durations, or repeated labels, then you can convert
those variable to their correct data types. Converting variables to their correct data types lets you
perform efficient computations and comparisons and improves memory usage. For instance,
represent the variables Year, Month, and DayofMonth as one datetime variable, the
UniqueCarrier as categorical, and ArrDelay as duration in minutes.

data = T(:,{'Year','Month','DayofMonth','UniqueCarrier','ArrDelay'});
data.Date = datetime(data.Year,data.Month,data.DayofMonth);
data.UniqueCarrier = categorical(data.UniqueCarrier);
data.ArrDelay = minutes(data.ArrDelay);

Find the day of the year with the longest delay, and then display the date.

ind = find(data.ArrDelay == max(data.ArrDelay));
data.Date(ind)

ans = datetime
 07-Apr-2008

Read All Worksheets from Spreadsheet File

A datastore is useful for processing arbitrarily large amounts of data that are spread across multiple
worksheets or multiple spreadsheet files. You can perform data import and data processing through
the datastore.

Create a datastore from the collection of worksheets in airlinesmall_subset.xlsx, select the
variables to import, and then preview the data.

ds = spreadsheetDatastore('airlinesmall_subset.xlsx');
ds.SelectedVariableNames = {'Year','Month','DayofMonth','UniqueCarrier','ArrDelay'};
preview(ds)

ans=8×5 table
 Year Month DayofMonth UniqueCarrier ArrDelay
 ____ _____ __________ _____________ ________

 1996 1 18 {'HP'} 6
 1996 1 12 {'HP'} 11
 1996 1 16 {'HP'} -13
 1996 1 1 {'HP'} 1
 1996 1 4 {'US'} -9
 1996 1 31 {'US'} 9
 1996 1 18 {'US'} -2
 1996 1 26 {'NW'} -10

Before importing data, you can specify what data types to use. For this example, import
UniqueCarrier as a categorical variable.

3 Spreadsheets

3-10

 ds.SelectedVariableTypes(4) = {'categorical'};

Import data using the readall or read functions. The readall function requires that all the data
fit into memory, which is true for the sample data. After the import, compute the maximum arrival
delay for this dataset.

alldata = readall(ds);
max(alldata.ArrDelay)/60

ans = 15.2333

For large data sets, import portions of the file using the read function. For more information, see
Read Collection or Sequence of Spreadsheet Files.

See Also
readtable | spreadsheetDatastore

More About
• “Read Spreadsheet Data Using Import Tool” on page 3-4
• “Read Spreadsheet Data into Array or Individual Variables” on page 3-7
• “Read Collection or Sequence of Spreadsheet Files” on page 3-12

 Read Spreadsheet Data into Table

3-11

Read Collection or Sequence of Spreadsheet Files
When you have data stored across multiple spreadsheet files, use spreadsheetDatastore to
manage and import the data. After creating the datastore, you can read all the data from the
collection simultaneously, or you can read one file at a time.

Data

If the folder C:\Data contains a collection of spreadsheet files, then capture the location of the data
in location. The data used in this example contains 10 spreadsheet files, where each file contains
10 rows of data. Your results will differ based on your files and data.

location = 'C:\Data';
dir(location)

. .. File01.xls File02.xls File03.xls File04.xls File05.xls File06.xls File07.xls File08.xls File09.xls File10.xls

Create Datastore

Create a datastore using the location of the files.

ds = spreadsheetDatastore(location)

ds =
 SpreadsheetDatastore with properties:

 Files: {
 'C:\Data\File01.xls';
 'C:\Data\File02.xls';
 'C:\Data\File03.xls'
 ... and 7 more
 }
 AlternateFileSystemRoots: {}
 Sheets: ''
 Range: ''

 Sheet Format Properties:
 NumHeaderLines: 0
 ReadVariableNames: true
 VariableNames: {'LastName', 'Gender', 'Age' ... and 7 more}
 VariableTypes: {'char', 'char', 'double' ... and 7 more}

 Properties that control the table returned by preview, read, readall:
 SelectedVariableNames: {'LastName', 'Gender', 'Age' ... and 7 more}
 SelectedVariableTypes: {'char', 'char', 'double' ... and 7 more}
 ReadSize: 'file'

Read Data from Datastore

Use the read or readall functions to import the data from the datastore. If the data from the
collection fits in the memory, then you can import it all at once using the readall function.

allData = readall(ds);
size(allData)

ans = 1×2

3 Spreadsheets

3-12

 100 10

Alternatively, you can import the data one file at a time using the read function. To control the
amount of data imported, before you call read, adjust the ReadSize property of the datastore. You
can set the ReadSize to 'file', 'sheet', or a positive integer.

• If ReadSize is 'file', then each call to read returns data one file at a time.
• If ReadSize is 'sheet', then each call to read returns data one sheet at a time.
• If ReadSize is a positive integer, then each call to read returns the number of rows specified by

ReadSize, or fewer if it reaches the end of the data.

ds.ReadSize = 'file';
firstFile = read(ds) % reads first file

firstFile=10×10 table
 LastName Gender Age Location Height Weight Smoker Systolic Diastolic SelfAssessedHealthStatus
 __________ ________ ___ ___________________________ ______ ______ _______ ________ _________ ________________________

 'Smith' 'Male' 38 'County General Hospital' 71 176 'true' 124 93 'Excellent'
 'Johnson' 'Male' 43 'VA Hospital' 69 163 'false' 109 77 'Fair'
 'Williams' 'Female' 38 'St. Mary's Medical Center' 64 131 'false' 125 83 'Good'
 'Jones' 'Female' 40 'VA Hospital' 67 133 'false' 117 75 'Fair'
 'Brown' 'Female' 49 'County General Hospital' 64 119 'false' 122 80 'Good'
 'Davis' 'Female' 46 'St. Mary's Medical Center' 68 142 'false' 121 70 'Good'
 'Miller' 'Female' 33 'VA Hospital' 64 142 'true' 130 88 'Good'
 'Wilson' 'Male' 40 'VA Hospital' 68 180 'false' 115 82 'Good'
 'Moore' 'Male' 28 'St. Mary's Medical Center' 68 183 'false' 115 78 'Excellent'
 'Taylor' 'Female' 31 'County General Hospital' 66 132 'false' 118 86 'Excellent'

secondFile = read(ds) % reads second file

secondFile=10×10 table
 LastName Gender Age Location Height Weight Smoker Systolic Diastolic SelfAssessedHealthStatus
 __________ ________ ___ ___________________________ ______ ______ _______ ________ _________ ________________________

 'Anderson' 'Female' 45 'County General Hospital' 68 128 'false' 114 77 'Excellent'
 'Thomas' 'Female' 42 'St. Mary's Medical Center' 66 137 'false' 115 68 'Poor'
 'Jackson' 'Male' 25 'VA Hospital' 71 174 'false' 127 74 'Poor'
 'White' 'Male' 39 'VA Hospital' 72 202 'true' 130 95 'Excellent'
 'Harris' 'Female' 36 'St. Mary's Medical Center' 65 129 'false' 114 79 'Good'
 'Martin' 'Male' 48 'VA Hospital' 71 181 'true' 130 92 'Good'
 'Thompson' 'Male' 32 'St. Mary's Medical Center' 69 191 'true' 124 95 'Excellent'
 'Garcia' 'Female' 27 'VA Hospital' 69 131 'true' 123 79 'Fair'
 'Martinez' 'Male' 37 'County General Hospital' 70 179 'false' 119 77 'Good'
 'Robinson' 'Male' 50 'County General Hospital' 68 172 'false' 125 76 'Good'

See Also
readtable | spreadsheetDatastore

More About
• “Read Spreadsheet Data into Table” on page 3-9

 Read Collection or Sequence of Spreadsheet Files

3-13

Write Data to Excel Spreadsheets
In this section...
“Write Tabular Data to Spreadsheet File” on page 3-14
“Write Numeric and Text Data to Spreadsheet File” on page 3-14
“Disable Warning When Adding New Worksheet” on page 3-15
“Format Cells in Excel Files” on page 3-15

Write Tabular Data to Spreadsheet File
To export a table in the workspace to a Microsoft® Excel® spreadsheet file, use the writetable
function. You can export data from the workspace to any worksheet in the file, and to any location
within that worksheet. By default, writetable writes your table data to the first worksheet in the
file, starting at cell A1.

For example, create a sample table of column-oriented data and display the first five rows.

load patients.mat
T = table(LastName,Age,Weight,Smoker);
T(1:5,:)

ans=5×4 table
 LastName Age Weight Smoker
 ____________ ___ ______ ______

 {'Smith' } 38 176 true
 {'Johnson' } 43 163 false
 {'Williams'} 38 131 false
 {'Jones' } 40 133 false
 {'Brown' } 49 119 false

Write table T to the first sheet in a new spreadsheet file named patientdata.xlsx, starting at cell
D1. To specify the portion of the worksheet you want to write to, use the Range name-value pair
argument. By default, writetable writes the table variable names as column headings in the
spreadsheet file.

filename = 'patientdata.xlsx';
writetable(T,filename,'Sheet',1,'Range','D1')

Write the table T without the variable names to a new sheet called 'MyNewSheet'. To write the data
without the variable names, specify the name-value pair WriteVariableNames as false.

writetable(T,filename,'Sheet','MyNewSheet','WriteVariableNames',false);

Write Numeric and Text Data to Spreadsheet File
To export a numeric array and a cell array to a Microsoft Excel spreadsheet file, use the
writematrix or writecell functions. You can export data in individual numeric and text
workspace variables to any worksheet in the file, and to any location within that worksheet. By
default, the import functions write your matrix data to the first worksheet in the file, starting at cell
A1.

3 Spreadsheets

3-14

For example, create a sample array of numeric data, A, and a sample cell array of text and numeric
data, C.

A = magic(5)
C = {'Time', 'Temp'; 12 98; 13 'x'; 14 97}

A =

 17 24 1 8 15
 23 5 7 14 16
 4 6 13 20 22
 10 12 19 21 3
 11 18 25 2 9

C =

 'Time' 'Temp'
 [12] [98]
 [13] 'x'
 [14] [97]

Write array A to the 5-by-5 rectangular region, E1:I5, on the first sheet in a new spreadsheet file
named testdata.xlsx.

filename = 'testdata.xlsx';
writematrix(A,filename,'Sheet',1,'Range','E1:I5')

Write cell array C to a rectangular region that starts at cell B2 on a worksheet named
Temperatures. You can specify range using only the first cell.

writecell(C,filename,'Sheet','Temperatures','Range','B2');

writecell displays a warning because the worksheet, Temperatures, did not previously exist, but
you can disable this warning.

Disable Warning When Adding New Worksheet
If the target worksheet does not exist in the file, then the writetable and writecell functions
display this warning:

Warning: Added specified worksheet.

For information on how to suppress warning messages, see “Suppress Warnings”.

Format Cells in Excel Files
To write data to Excel files on Windows systems with custom formats (such as fonts or colors), access
the COM server directly using actxserver rather than writetable, writetimetable,
writematrix, or writecell. For example, Technical Solution 1-QLD4K uses actxserver to
establish a connection between MATLAB and Excel, write data to a worksheet, and specify the colors
of the cells.

For more information, see “Get Started with COM”.

 Write Data to Excel Spreadsheets

3-15

https://www.mathworks.com/support/solutions/en/data/1-QLD4K/index.html?solution=1-QLD4K

See Also
writecell | writematrix | writetable

3 Spreadsheets

3-16

Define Import Options for Tables
Typically, you can import tables using the readtable function. However, sometimes importing
tabular data requires additional control over the import process. For example, you might want to
select the variables to import or handle rows with missing or error-causing data. To control the
import process, you can create an import options object. The object has properties that you can
adjust based on your import needs.

Create Import Options

To create an import options object for a sample data set, airlinesmall.csv, use the
detectImportOptions function. The detectImportOptions function creates a
DelimitedTextImportOptions object for this text file. For a full list of properties of the import
options object, see the detectImportOptions reference page.

opts = detectImportOptions('airlinesmall.csv');

Customize Table-Level Import Options

The import options object has properties that you can adjust to control the import process. Some
properties apply to the entire table while others apply to specific variables. Properties that affect the
entire table include rules to manage error-causing or missing data. For example, remove rows with
data that cause import errors by setting the ImportErrorRule to 'omitrow'. Replace missing
values by setting the MissingRule to 'fill'. The FillValue property value determines what
value replaces the missing values. For example, you can replace missing values with NaN.

opts.ImportErrorRule = 'omitrow';
opts.MissingRule = 'fill';

Customize Variable-Level Import Options

To get and set options for specific variables use the getvaropts, setvartype, and setvaropts
functions. For example, view the current options for the variables named FlightNum, Origin, Dest,
and ArrDelay, using the getvaropts function.

getvaropts(opts,{'FlightNum','Origin','Dest','ArrDelay'});

Change the data types for the variables using the setvartype function:

• Since the values in the variable FlightNum are identifiers for the flight and not numerical values,
change its data type to char.

• Since the variables Origin and Dest designate a finite set of repeating text values, change their
data type to categorical.

 opts = setvartype(opts,{'FlightNum','Origin','Dest','ArrDelay'},...
 {'char','categorical','categorical','single'});

Change other properties using the setvaropts function:

• For the FlightNum variable, remove any leading white spaces from the text by setting the
WhiteSpaceRule property to trimleading.

• For the ArrDelay variable, replace fields containing 0 or NA with the value specified in
FillValue property by setting the TreatAsMissing property.

 opts = setvaropts(opts,'FlightNum','WhitespaceRule','trimleading');
 opts = setvaropts(opts,'ArrDelay','TreatAsMissing',{'0','NA'});

 Define Import Options for Tables

3-17

Import Table

Specify the variables to get, import them using readtable, and display the first 8 rows of the table.

opts.SelectedVariableNames = {'FlightNum','Origin','Dest','ArrDelay'};
T = readtable('airlinesmall.csv',opts);
T(1:8,:)

ans=8×4 table
 FlightNum Origin Dest ArrDelay
 _________ ______ ____ ________

 {'1503'} LAX SJC 8
 {'1550'} SJC BUR 8
 {'1589'} SAN SMF 21
 {'1655'} BUR SJC 13
 {'1702'} SMF LAX 4
 {'1729'} LAX SJC 59
 {'1763'} SAN SFO 3
 {'1800'} SEA LAX 11

See Also
DelimitedTextImportOptions | SpreadsheetImportOptions | detectImportOptions |
getvaropts | readcell | readmatrix | readtable | readvars | setvaropts | setvartype

More About
• “Read Spreadsheet Data Using Import Tool” on page 3-4
• “Read Spreadsheet Data into Table” on page 3-9

3 Spreadsheets

3-18

Low-Level File I/O

• “Import Text Data Files with Low-Level I/O” on page 4-2
• “Import Binary Data with Low-Level I/O” on page 4-8
• “Export to Text Data Files with Low-Level I/O” on page 4-13
• “Export Binary Data with Low-Level I/O” on page 4-18

4

Import Text Data Files with Low-Level I/O
In this section...
“Overview” on page 4-2
“Reading Data in a Formatted Pattern” on page 4-2
“Reading Data Line-by-Line” on page 4-4
“Testing for End of File (EOF)” on page 4-5
“Opening Files with Different Character Encodings” on page 4-7

Overview
Low-level file I/O functions allow the most control over reading or writing data to a file. However,
these functions require that you specify more detailed information about your file than the easier-to-
use high-level functions, such as importdata. For more information on the high-level functions that
read text files, see “Import Text Files” on page 2-2.

If the high-level functions cannot import your data, use one of the following:

• fscanf, which reads formatted data in a text or ASCII file; that is, a file you can view in a text
editor. For more information, see “Reading Data in a Formatted Pattern” on page 4-2.

• fgetl and fgets, which read one line of a file at a time, where a newline character separates
each line. For more information, see “Reading Data Line-by-Line” on page 4-4.

• fread, which reads a stream of data at the byte or bit level. For more information, see “Import
Binary Data with Low-Level I/O” on page 4-8.

For additional information, see:

• “Testing for End of File (EOF)” on page 4-5
• “Opening Files with Different Character Encodings” on page 4-7

Note The low-level file I/O functions are based on functions in the ANSI® Standard C Library.
However, MATLAB includes vectorized versions of the functions, to read and write data in an array
with minimal control loops.

Reading Data in a Formatted Pattern
To import text files that importdata and textscan cannot read, consider using fscanf. The
fscanf function requires that you describe the format of your file, but includes many options for this
format description.

For example, create a text file mymeas.dat as shown. The data in mymeas.dat includes repeated
sets of times, dates, and measurements. The header text includes the number of sets of
measurements, N:

Measurement Data
N=3

12:00:00

4 Low-Level File I/O

4-2

01-Jan-1977
4.21 6.55 6.78 6.55
9.15 0.35 7.57 NaN
7.92 8.49 7.43 7.06
9.59 9.33 3.92 0.31
09:10:02
23-Aug-1990
2.76 6.94 4.38 1.86
0.46 3.17 NaN 4.89
0.97 9.50 7.65 4.45
8.23 0.34 7.95 6.46
15:03:40
15-Apr-2003
7.09 6.55 9.59 7.51
7.54 1.62 3.40 2.55
NaN 1.19 5.85 5.05
6.79 4.98 2.23 6.99

Opening the File

As with any of the low-level I/O functions, before reading, open the file with fopen, and obtain a file
identifier. By default, fopen opens files for read access, with a permission of 'r'.

When you finish processing the file, close it with fclose(fid).

Describing the Data

Describe the data in the file with format specifiers, such as '%s' for text, '%d' for an integer, or
'%f' for a floating-point number. (For a complete list of specifiers, see the fscanf reference page.)

To skip literal characters in the file, include them in the format description. To skip a data field, use
an asterisk ('*') in the specifier.

For example, consider the header lines of mymeas.dat:

Measurement Data % skip the first 2 words, go to next line: %*s %*s\n
N=3 % ignore 'N=', read integer: N=%d\n
 % go to next line: \n
12:00:00
01-Jan-1977
4.21 6.55 6.78 6.55
...

To read the headers and return the single value for N:

N = fscanf(fid, '%*s %*s\nN=%d\n\n', 1);

Specifying the Number of Values to Read

By default, fscanf reapplies your format description until it cannot match the description to the
data, or it reaches the end of the file.

Optionally, specify the number of values to read, so that fscanf does not attempt to read the entire
file. For example, in mymeas.dat, each set of measurements includes a fixed number of rows and
columns:

 Import Text Data Files with Low-Level I/O

4-3

measrows = 4;
meascols = 4;
meas = fscanf(fid, '%f', [measrows, meascols])';

Creating Variables in the Workspace

There are several ways to store mymeas.dat in the MATLAB workspace. In this case, read the values
into a structure. Each element of the structure has three fields: mtime, mdate, and meas.

Note fscanf fills arrays with numeric values in column order. To make the output array match the
orientation of numeric data in a file, transpose the array.

filename = 'mymeas.dat';
measrows = 4;
meascols = 4;

% open the file
fid = fopen(filename);

% read the file headers, find N (one value)
N = fscanf(fid, '%*s %*s\nN=%d\n\n', 1);

% read each set of measurements
for n = 1:N
 mystruct(n).mtime = fscanf(fid, '%s', 1);
 mystruct(n).mdate = fscanf(fid, '%s', 1);

 % fscanf fills the array in column order,
 % so transpose the results
 mystruct(n).meas = ...
 fscanf(fid, '%f', [measrows, meascols])';
end

% close the file
fclose(fid);

Reading Data Line-by-Line
MATLAB provides two functions that read lines from files and store them as character vectors: fgetl
and fgets. The fgets function copies the line along with the newline character to the output, but
fgetl does not.

The following example uses fgetl to read an entire file one line at a time. The function litcount
determines whether a given character sequence (literal) appears in each line. If it does, the
function prints the entire line preceded by the number of times the literal appears on the line.

function y = litcount(filename, literal)
% Count the number of times a given literal appears in each line.

fid = fopen(filename);
y = 0;
tline = fgetl(fid);
while ischar(tline)
 matches = strfind(tline, literal);
 num = length(matches);

4 Low-Level File I/O

4-4

 if num > 0
 y = y + num;
 fprintf(1,'%d:%s\n',num,tline);
 end
 tline = fgetl(fid);
end
fclose(fid);

Create an input data file called badpoem:

Oranges and lemons,
Pineapples and tea.
Orangutans and monkeys,
Dragonflys or fleas.

To find out how many times 'an' appears in this file, call litcount:

litcount('badpoem','an')

This returns:

2: Oranges and lemons,
1: Pineapples and tea.
3: Orangutans and monkeys,
ans =
 6

Testing for End of File (EOF)
When you read a portion of your data at a time, you can use feof to check whether you have reached
the end of the file. feof returns a value of 1 when the file pointer is at the end of the file. Otherwise,
it returns 0.

Note Opening an empty file does not move the file position indicator to the end of the file. Read
operations, and the fseek and frewind functions, move the file position indicator.

Testing for EOF with feof

When you use textscan, fscanf, or fread to read portions of data at a time, use feof to check
whether you have reached the end of the file.

For example, suppose that the hypothetical file mymeas.dat has the following form, with no
information about the number of measurement sets. Read the data into a structure with fields for
mtime, mdate, and meas:

12:00:00
01-Jan-1977
4.21 6.55 6.78 6.55
9.15 0.35 7.57 NaN
7.92 8.49 7.43 7.06
9.59 9.33 3.92 0.31
09:10:02
23-Aug-1990
2.76 6.94 4.38 1.86
0.46 3.17 NaN 4.89

 Import Text Data Files with Low-Level I/O

4-5

0.97 9.50 7.65 4.45
8.23 0.34 7.95 6.46

To read the file:

filename = 'mymeas.dat';
measrows = 4;
meascols = 4;

% open the file
fid = fopen(filename);

% make sure the file is not empty
finfo = dir(filename);
fsize = finfo.bytes;

if fsize > 0

 % read the file
 block = 1;
 while ~feof(fid)
 mystruct(block).mtime = fscanf(fid, '%s', 1);
 mystruct(block).mdate = fscanf(fid, '%s', 1);

 % fscanf fills the array in column order,
 % so transpose the results
 mystruct(block).meas = ...
 fscanf(fid, '%f', [measrows, meascols])';

 block = block + 1;
 end

end

% close the file
fclose(fid);

Testing for EOF with fgetl and fgets

If you use fgetl or fgets in a control loop, feof is not always the best way to test for end of file. As
an alternative, consider checking whether the value that fgetl or fgets returns is a character
vector.

For example, the function litcount described in “Reading Data Line-by-Line” on page 4-4 includes
the following while loop and fgetl calls :

y = 0;
tline = fgetl(fid);
while ischar(tline)
 matches = strfind(tline, literal);
 num = length(matches);
 if num > 0
 y = y + num;
 fprintf(1,'%d:%s\n',num,tline);
 end
 tline = fgetl(fid);
end

4 Low-Level File I/O

4-6

This approach is more robust than testing ~feof(fid) for two reasons:

• If fgetl or fgets find data, they return a character vector. Otherwise, they return a number
(-1).

• After each read operation, fgetl and fgets check the next character in the file for the end-of-file
marker. Therefore, these functions sometimes set the end-of-file indicator before they return a
value of -1. For example, consider the following three-line text file. Each of the first two lines ends
with a newline character, and the third line contains only the end-of-file marker:

123
456

Three sequential calls to fgetl yield the following results:

t1 = fgetl(fid); % t1 = '123', feof(fid) = false
t2 = fgetl(fid); % t2 = '456', feof(fid) = true
t3 = fgetl(fid); % t3 = -1, feof(fid) = true

This behavior does not conform to the ANSI specifications for the related C language functions.

Opening Files with Different Character Encodings
Encoding schemes support the characters required for particular alphabets, such as those for
Japanese or European languages. Common encoding schemes include US-ASCII or UTF-8.

If you do not specify an encoding scheme when opening a file for reading, fopen uses auto character-
set detection to determine the encoding. If you do not specify an encoding scheme when opening a
file for writing, fopen defaults to using UTF-8 in order to provide interoperability between all
platforms and locales without data loss or corruption. For more information, see .

To determine the default, open a file, and call fopen again with the syntax:

[filename, permission, machineformat, encoding] = fopen(fid);

If you specify an encoding scheme when you open a file, the following functions apply that scheme:
fscanf, fprintf, fgetl, fgets, fread, and fwrite.

For a complete list of supported encoding schemes, and the syntax for specifying the encoding, see
the fopen reference page.

 Import Text Data Files with Low-Level I/O

4-7

Import Binary Data with Low-Level I/O
In this section...
“Low-Level Functions for Importing Data” on page 4-8
“Reading Binary Data in a File” on page 4-8
“Reading Portions of a File” on page 4-10
“Reading Files Created on Other Systems” on page 4-12

Low-Level Functions for Importing Data
Low-level file I/O functions allow the most direct control over reading or writing data to a file.
However, these functions require that you specify more detailed information about your file than the
easier-to-use high-level functions. For a complete list of high-level functions and the file formats they
support, see “Supported File Formats for Import and Export” on page 1-2.

If the high-level functions cannot import your data, use one of the following:

• fscanf, which reads formatted data in a text or ASCII file; that is, a file you can view in a text
editor. For more information, see “Reading Data in a Formatted Pattern” on page 4-2.

• fgetl and fgets, which read one line of a file at a time, where a newline character separates
each line. For more information, see “Reading Data Line-by-Line” on page 4-4.

• fread, which reads a stream of data at the byte or bit level. For more information, see “Reading
Binary Data in a File” on page 4-8.

Note The low-level file I/O functions are based on functions in the ANSI Standard C Library.
However, MATLAB includes vectorized versions of the functions, to read and write data in an array
with minimal control loops.

Reading Binary Data in a File
As with any of the low-level I/O functions, before importing, open the file with fopen, and obtain a
file identifier. When you finish processing a file, close it with fclose(fileID).

By default, fread reads a file 1 byte at a time, and interprets each byte as an 8-bit unsigned integer
(uint8). fread creates a column vector, with one element for each byte in the file. The values in the
column vector are of class double.

For example, consider the file nine.bin, created as follows:

fid = fopen('nine.bin','w');
fwrite(fid, [1:9]);
fclose(fid);

To read all data in the file into a 9-by-1 column vector of class double:

fid = fopen('nine.bin');
col9 = fread(fid);
fclose(fid);

4 Low-Level File I/O

4-8

Changing the Dimensions of the Array

By default, fread reads all values in the file into a column vector. However, you can specify the
number of values to read, or describe a two-dimensional output matrix.

For example, to read nine.bin, described in the previous example:

fid = fopen('nine.bin');

% Read only the first six values
col6 = fread(fid, 6);

% Return to the beginning of the file
frewind(fid);

% Read first four values into a 2-by-2 matrix
frewind(fid);
two_dim4 = fread(fid, [2, 2]);

% Read into a matrix with 3 rows and
% unspecified number of columns
frewind(fid);
two_dim9 = fread(fid, [3, inf]);

% Close the file
fclose(fid);

Describing the Input Values

If the values in your file are not 8-bit unsigned integers, specify the size of the values.

For example, consider the file fpoint.bin, created with double-precision values as follows:

myvals = [pi, 42, 1/3];

fid = fopen('fpoint.bin','w');
fwrite(fid, myvals, 'double');
fclose(fid);

To read the file:

fid = fopen('fpoint.bin');

% read, and transpose so samevals = myvals
samevals = fread(fid, 'double')';

fclose(fid);

For a complete list of precision descriptions, see the fread function reference page.

Saving Memory

By default, fread creates an array of class double. Storing double-precision values in an array
requires more memory than storing characters, integers, or single-precision values.

To reduce the amount of memory required to store your data, specify the class of the array using one
of the following methods:

 Import Binary Data with Low-Level I/O

4-9

• Match the class of the input values with an asterisk ('*'). For example, to read single-precision
values into an array of class single, use the command:

mydata = fread(fid,'*single')
• Map the input values to a new class with the '=>' symbol. For example, to read uint8 values into

an uint16 array, use the command:

mydata = fread(fid,'uint8=>uint16')

For a complete list of precision descriptions, see the fread function reference page.

Reading Portions of a File
MATLAB low-level functions include several options for reading portions of binary data in a file:

• Read a specified number of values at a time, as described in “Changing the Dimensions of the
Array” on page 4-9. Consider combining this method with “Testing for End of File” on page 4-10.

• Move to a specific location in a file to begin reading. For more information, see “Moving within a
File” on page 4-10.

• Skip a certain number of bytes or bits after each element read. For an example, see “Write and
Read Complex Numbers” on page 4-21.

Testing for End of File

When you open a file, MATLAB creates a pointer to indicate the current position within the file.

Note Opening an empty file does not move the file position indicator to the end of the file. Read
operations, and the fseek and frewind functions, move the file position indicator.

Use the feof function to check whether you have reached the end of a file. feof returns a value of 1
when the file pointer is at the end of the file. Otherwise, it returns 0.

For example, read a large file in parts:

filename = 'largedata.dat'; % hypothetical file
segsize = 10000;

fid = fopen(filename);

while ~feof(fid)
 currData = fread(fid, segsize);
 if ~isempty(currData)
 disp('Current Data:');
 disp(currData);
 end
end

fclose(fid);

Moving within a File

To read or write selected portions of data, move the file position indicator to any location in the file.
For example, call fseek with the syntax

4 Low-Level File I/O

4-10

fseek(fid,offset,origin);

where:

• fid is the file identifier obtained from fopen.
• offset is a positive or negative offset value, specified in bytes.
• origin specifies the location from which to calculate the position:

'bof' Beginning of file
'cof' Current position in file
'eof' End of file

Alternatively, to move easily to the beginning of a file:

frewind(fid);

Use ftell to find the current position within a given file. ftell returns the number of bytes from
the beginning of the file.

For example, create a file five.bin:

A = 1:5;
fid = fopen('five.bin','w');
fwrite(fid, A,'short');
fclose(fid);

Because the call to fwrite specifies the short format, each element of A uses two storage bytes in
five.bin.

Reopen five.bin for reading:

fid = fopen('five.bin','r');

Move the file position indicator forward 6 bytes from the beginning of the file:

status = fseek(fid,6,'bof');

Read the next element:

four = fread(fid,1,'short');

The act of reading advances the file position indicator. To determine the current file position
indicator, call ftell:

position = ftell(fid)

position =
 8

 Import Binary Data with Low-Level I/O

4-11

To move the file position indicator back 4 bytes, call fseek again:

status = fseek(fid,-4,'cof');

Read the next value:

three = fread(fid,1,'short');

Reading Files Created on Other Systems
Different operating systems store information differently at the byte or bit level:

• Big-endian systems store bytes starting with the largest address in memory (that is, they start
with the big end).

• Little-endian systems store bytes starting with the smallest address (the little end).

Windows systems use little-endian byte ordering, and UNIX systems use big-endian byte ordering.

To read a file created on an opposite-endian system, specify the byte ordering used to create the file.
You can specify the ordering in the call to open the file, or in the call to read the file.

For example, consider a file with double-precision values named little.bin, created on a little-
endian system. To read this file on a big-endian system, use one (or both) of the following commands:

• Open the file with

fid = fopen('little.bin', 'r', 'l')
• Read the file with

mydata = fread(fid, 'double', 'l')

where 'l' indicates little-endian ordering.

If you are not sure which byte ordering your system uses, call the computer function:

[cinfo, maxsize, ordering] = computer

The returned ordering is 'L' for little-endian systems, or 'B' for big-endian systems.

4 Low-Level File I/O

4-12

Export to Text Data Files with Low-Level I/O
In this section...
“Write to Text Files Using fprintf” on page 4-13
“Append To or Overwrite Existing Text Files” on page 4-14
“Open Files with Different Character Encodings” on page 4-17

Write to Text Files Using fprintf
This example shows how to create text files, including combinations of numeric and character data
and nonrectangular files, using the low-level fprintf function.

fprintf is based on its namesake in the ANSI® Standard C Library. However, MATLAB® uses a
vectorized version of fprintf that writes data from an array with minimal control loops.

Open the File

Create a sample matrix y with two rows.

x = 0:0.1:1;
y = [x; exp(x)];

Open a file for writing with fopen and obtain a file identifier, fileID. By default, fopen opens a file
for read-only access, so you must specify the permission to write or append, such as 'w' or 'a'.

fileID = fopen('exptable.txt','w');

Write to the File

Write a title, followed by a blank line using the fprintf function. To move to a new line in the file,
use '\n'.

fprintf(fileID, 'Exponential Function\n\n');

Note: Some Windows® text editors, including Microsoft® Notepad, require a newline character
sequence of '\r\n' instead of '\n'. However, '\n' is sufficient for Microsoft Word or WordPad.

Write the values in y in column order so that two values appear in each row of the file. fprintf
converts the numbers or characters in the array inputs to text according to your specifications.
Specify '%f' to print floating-point numbers.

fprintf(fileID,'%f %f\n',y);

Other common conversion specifiers include '%d' for integers or '%s' for characters. fprintf
reapplies the conversion information to cycle through all values of the input arrays in column order.

Close the file using fclose when you finish writing.

fclose(fileID);

View the contents of the file using the type function.

type exptable.txt

 Export to Text Data Files with Low-Level I/O

4-13

Exponential Function

0.000000 1.000000
0.100000 1.105171
0.200000 1.221403
0.300000 1.349859
0.400000 1.491825
0.500000 1.648721
0.600000 1.822119
0.700000 2.013753
0.800000 2.225541
0.900000 2.459603
1.000000 2.718282

Additional Formatting Options

Optionally, include additional information in the call to fprintf to describe field width, precision, or
the order of the output values. For example, specify the field width and number of digits to the right
of the decimal point in the exponential table.

fileID = fopen('exptable_new.txt', 'w');

fprintf(fileID,'Exponential Function\n\n');
fprintf(fileID,'%6.2f %12.8f\n', y);

fclose(fileID);

View the contents of the file.

type exptable_new.txt

Exponential Function

 0.00 1.00000000
 0.10 1.10517092
 0.20 1.22140276
 0.30 1.34985881
 0.40 1.49182470
 0.50 1.64872127
 0.60 1.82211880
 0.70 2.01375271
 0.80 2.22554093
 0.90 2.45960311
 1.00 2.71828183

Append To or Overwrite Existing Text Files
This example shows how to append values to an existing text file, rewrite the entire file, and
overwrite only a portion of the file.

By default, fopen opens files with read access. To change the type of file access, use the permission
specifier in the call to fopen. Possible permission specifiers include:

• 'r' for reading
• 'w' for writing, discarding any existing contents of the file
• 'a' for appending to the end of an existing file

4 Low-Level File I/O

4-14

To open a file for both reading and writing or appending, attach a plus sign to the permission, such as
'w+' or 'a+'. If you open a file for both reading and writing, you must call fseek or frewind
between read and write operations.

Append to Existing Text File

Create a file named changing.txt.

fileID = fopen('changing.txt','w');
fmt = '%5d %5d %5d %5d\n';
fprintf(fileID,fmt, magic(4));
fclose(fileID);

The current contents of changing.txt are:

16 5 9 4

2 11 7 14

3 10 6 15

13 8 12 1

Open the file with permission to append.

fileID = fopen('changing.txt','a');

Write the values [55 55 55 55] at the end of file:

fprintf(fileID,fmt,[55 55 55 55]);

Close the file.

fclose(fileID);

View the contents of the file using the type function.

type changing.txt

 16 5 9 4
 2 11 7 14
 3 10 6 15
 13 8 12 1
 55 55 55 55

Overwrite Entire Text File

A text file consists of a contiguous set of characters, including newline characters. To replace a line of
the file with a different number of characters, you must rewrite the line that you want to change and
all subsequent lines in the file.

Replace the first line of changing.txt with longer, descriptive text. Because the change applies to
the first line, rewrite the entire file.

replaceLine = 1;
numLines = 5;
newText = 'This file originally contained a magic square';

 Export to Text Data Files with Low-Level I/O

4-15

fileID = fopen('changing.txt','r');
mydata = cell(1, numLines);
for k = 1:numLines
 mydata{k} = fgetl(fileID);
end
fclose(fileID);

mydata{replaceLine} = newText;

fileID = fopen('changing.txt','w');
fprintf(fileID,'%s\n',mydata{:});
fclose(fileID);

View the contents of the file.

type changing.txt

This file originally contained a magic square
 2 11 7 14
 3 10 6 15
 13 8 12 1
 55 55 55 55

Overwrite Portion of Text File

Replace the third line of changing.txt with [33 33 33 33]. If you want to replace a portion of a text
file with exactly the same number of characters, you do not need to rewrite any other lines in the file.

replaceLine = 3;
myformat = '%5d %5d %5d %5d\n';
newData = [33 33 33 33];

Move the file position marker to the correct line.

fileID = fopen('changing.txt','r+');
for k=1:(replaceLine-1);
 fgetl(fileID);
end

Call fseek between read and write operations.

fseek(fileID,0,'cof');

fprintf(fileID, myformat, newData);
fclose(fileID);

View the contents of the file.

type changing.txt

This file originally contained a magic square
 2 11 7 14
 33 33 33 33

4 Low-Level File I/O

4-16

 13 8 12 1
 55 55 55 55

Open Files with Different Character Encodings
Encoding schemes support the characters required for particular alphabets, such as those for
Japanese or European languages. Common encoding schemes include US-ASCII or UTF-8.

If you do not specify an encoding scheme when opening a file for reading, fopen uses auto character-
set detection to determine the encoding. If you do not specify an encoding scheme when opening a
file for writing, fopen defaults to using UTF-8 in order to provide interoperability between all
platforms and locales without data loss or corruption. For more information, see .

To determine the default, open a file, and call fopen again with the syntax:

[filename, permission, machineformat, encoding] = fopen(fid);

If you specify an encoding scheme when you open a file, the following functions apply that scheme:
fscanf, fprintf, fgetl, fgets, fread, and fwrite.

For a complete list of supported encoding schemes, and the syntax for specifying the encoding, see
the fopen reference page.

See Also
fopen | fprintf | fseek

More About
• “Formatting Text”
• “Write Data to Text Files” on page 2-21

 Export to Text Data Files with Low-Level I/O

4-17

Export Binary Data with Low-Level I/O
In this section...
“Low-Level Functions for Exporting Data” on page 4-18
“Write Binary Data to a File” on page 4-18
“Overwrite or Append to an Existing Binary File” on page 4-19
“Create a File for Use on a Different System” on page 4-20
“Write and Read Complex Numbers” on page 4-21

Low-Level Functions for Exporting Data
Low-level file I/O functions allow the most direct control over reading or writing data to a file.
However, these functions require that you specify more detailed information about your file than the
easier-to-use high-level functions. For a complete list of high-level functions and the file formats they
support, see “Supported File Formats for Import and Export” on page 1-2.

If the high-level functions cannot export your data, use one of the following:

• fprintf, which writes formatted data to a text or ASCII file; that is, a file you can view in a text
editor or import into a spreadsheet. For more information, see “Export to Text Data Files with
Low-Level I/O” on page 4-13.

• fwrite, which writes a stream of binary data to a file. For more information, see “Write Binary
Data to a File” on page 4-18.

Note The low-level file I/O functions are based on functions in the ANSI Standard C Library.
However, MATLAB includes vectorized versions of the functions, to read and write data in an array
with minimal control loops.

Write Binary Data to a File
This example shows how to use the fwrite function to export a stream of binary data to a file.

Create a file named nine.bin with the integers from 1 to 9. As with any of the low-level I/O
functions, before writing, open or create a file with fopen and obtain a file identifier.

fileID = fopen('nine.bin','w');
fwrite(fileID, [1:9]);

By default, fwrite writes values from an array in column order as 8-bit unsigned integers (uint8).

When you finish processing a file, close it with fclose.

fclose(fileID);

Create a file with double-precision values. You must specify the precision of the values if the values in
your matrix are not 8-bit unsigned integers.

mydata = [pi 42 1/3];

fileID = fopen('double.bin','w');

4 Low-Level File I/O

4-18

fwrite(fileID,mydata,'double');
fclose(fileID);

Overwrite or Append to an Existing Binary File
This example shows how to overwrite a portion of an existing binary file and append values to the file.

By default, fopen opens files with read access. To change the type of file access, use the permission
specifier in the call to fopen. Possible permission specifiers include:

• 'r' for reading
• 'w' for writing, discarding any existing contents of the file
• 'a' for appending to the end of an existing file

To open a file for both reading and writing or appending, attach a plus sign to the permission, such as
'w+' or 'a+'. If you open a file for both reading and writing, you must call fseek or frewind
between read and write operations.

Overwrite a Portion of an Existing File

Create a file named magic4.bin, specifying permission to write and read.

fileID = fopen('magic4.bin','w+');
fwrite(fileID,magic(4));

The original magic(4) matrix is:

16 2 3 13

5 11 10 8

9 7 6 12

4 14 15 1

The file contains 16 bytes, 1 for each value in the matrix.

Replace the values in the second column of the matrix with the vector, [44 44 44 44]. To do this,
first seek to the fourth byte from the beginning of the file using fseek.

fseek(fileID,4,'bof');

Write the vector [44 44 44 44] using fwrite.

fwrite(fileID,[44 44 44 44]);

Read the results from the file into a 4-by-4 matrix.

frewind(fileID);
newdata = fread(fileID,[4,4])

newdata = 4×4

 16 44 3 13
 5 44 10 8

 Export Binary Data with Low-Level I/O

4-19

 9 44 6 12
 4 44 15 1

Close the file.

fclose(fileID);

Append Binary Data to Existing File

Append the values [55 55 55 55] to magic4.bin. First. open the file with permission to append
and read.

fileID = fopen('magic4.bin','a+');

Write values at end of file.

fwrite(fileID,[55 55 55 55]);

Read the results from the file into a 4-by-5 matrix.

frewind(fileID);
appended = fread(fileID, [4,5])

appended = 4×5

 16 44 3 13 55
 5 44 10 8 55
 9 44 6 12 55
 4 44 15 1 55

Close the file.

fclose(fileID);

Create a File for Use on a Different System
Different operating systems store information differently at the byte or bit level:

• Big-endian systems store bytes starting with the largest address in memory (that is, they start
with the big end).

• Little-endian systems store bytes starting with the smallest address (the little end).

Windows systems use little-endian byte ordering, and UNIX systems use big-endian byte ordering.

To create a file for use on an opposite-endian system, specify the byte ordering for the target system.
You can specify the ordering in the call to open the file, or in the call to write the file.

For example, to create a file named myfile.bin on a big-endian system for use on a little-endian
system, use one (or both) of the following commands:

• Open the file with

fid = fopen('myfile.bin', 'w', 'l')

• Write the file with

4 Low-Level File I/O

4-20

fwrite(fid, mydata, precision, 'l')

where 'l' indicates little-endian ordering.

If you are not sure which byte ordering your system uses, call the computer function:

[cinfo, maxsize, ordering] = computer

The returned ordering is 'L' for little-endian systems, or 'B' for big-endian systems.

Write and Read Complex Numbers
This example shows how to write and read complex numbers in binary files.

The available precision values for fwrite do not explicitly support complex numbers. To store
complex numbers in a file, separate the real and imaginary components and write them separately to
the file. There are two ways to do this:

• Write all real components followed by all imaginary components
• Interleave the components

Use the approach that allows you to read the data in your target application.

Separate Real and Imaginary Components

Create an array that contains complex values.

nrows = 5;
ncols = 5;
z = complex(rand(nrows, ncols), rand(nrows, ncols))

z = 5×5 complex

 0.8147 + 0.7577i 0.0975 + 0.7060i 0.1576 + 0.8235i 0.1419 + 0.4387i 0.6557 + 0.4898i
 0.9058 + 0.7431i 0.2785 + 0.0318i 0.9706 + 0.6948i 0.4218 + 0.3816i 0.0357 + 0.4456i
 0.1270 + 0.3922i 0.5469 + 0.2769i 0.9572 + 0.3171i 0.9157 + 0.7655i 0.8491 + 0.6463i
 0.9134 + 0.6555i 0.9575 + 0.0462i 0.4854 + 0.9502i 0.7922 + 0.7952i 0.9340 + 0.7094i
 0.6324 + 0.1712i 0.9649 + 0.0971i 0.8003 + 0.0344i 0.9595 + 0.1869i 0.6787 + 0.7547i

Separate the complex values into real and imaginary components.

z_real = real(z);
z_imag = imag(z);

Write All Real Components Followed By Imaginary Components

Write all the real components, z_real, followed by all the imaginary components, z_imag, to a file
named complex_adj.bin.

adjacent = [z_real z_imag];

fileID = fopen('complex_adj.bin', 'w');
fwrite(fileID,adjacent,'double');
fclose(fileID);

Read the values from the file using fread.

 Export Binary Data with Low-Level I/O

4-21

fileID = fopen('complex_adj.bin');
same_real = fread(fileID, [nrows, ncols], 'double');
same_imag = fread(fileID, [nrows, ncols], 'double');
fclose(fileID);

same_z = complex(same_real, same_imag);

Interleave Real and Imaginary Components

An alternative approach is to interleave the real and imaginary components for each value. fwrite
writes values in column order, so build an array that combines the real and imaginary parts by
alternating rows.

First, preallocate the interleaved array.

interleaved = zeros(nrows*2, ncols);

Alternate real and imaginary data.

newrow = 1;
for row = 1:nrows
 interleaved(newrow,:) = z_real(row,:);
 interleaved(newrow + 1,:) = z_imag(row,:);
 newrow = newrow + 2;
end

Write the interleaved values to a file named complex_int.bin.

fileID = fopen('complex_int.bin','w');
fwrite(fileID, interleaved, 'double');
fclose(fileID);

Open the file for reading and read the real values from the file. The fourth input to fread tells the
function to skip the specified number of bytes after reading each value.

fileID = fopen('complex_int.bin');
same_real = fread(fileID, [nrows, ncols], 'double', 8);

Return to the first imaginary value in the file. Then, read all the imaginary data.

fseek(fileID, 8, 'bof');
same_imag = fread(fileID, [nrows, ncols], 'double', 8);
fclose(fileID);

same_z = complex(same_real, same_imag);

See Also
fopen | fread | fseek | fwrite

More About
• “Moving within a File” on page 4-10

4 Low-Level File I/O

4-22

Internet of Things (IoT) Data

• “Aggregate Data in ThingSpeak Channel” on page 5-2
• “Regularize Irregularly Sampled Data” on page 5-3
• “Plot Data Read from ThingSpeak Channel” on page 5-4
• “Read ThingSpeak Data and Predict Battery Discharge Time with Linear Fit” on page 5-5

5

Aggregate Data in ThingSpeak Channel
This example shows how to aggregate data to a lower time resolution in a ThingSpeak™ channel to
remove irregularity. Irregularity in a data can be caused due to several factors such as event driven
sensing, malfunctioning of sensors, or network latencies.

Read Data

ThingSpeak channel 22641 contains tide and weather data measured once a minute at Ockway Bay,
Cape Cod. Field 2 of the channel contains air temperature data. Read the air temperature data for the
past 3 hours from channel 22641 using the thingSpeakRead function.

datetimeStop = dateshift(datetime('now'),'start','hour');
datetimeStart = dateshift(datetime('now'),'start','hour') - hours(3);

data = thingSpeakRead(22641,'DateRange',[datetimeStart,datetimeStop],...
 'Fields',2,'outputFormat','timetable');

Aggregate the Data

Data is measured once every minute. However, due to network latency associated with the
measurement system, the actual timestamps can be greater than or less than a minute apart. Further,
for the application of interest, the frequency of data measured every minute is high. Data at an hourly
time resolution is sufficient. You can use the retime function to aggregate the data for each hour to a
single value. You can use the maximum value for each hour to aggregate the data. Preview the first
four values of the data with head.

dataHourly = retime(data,'hourly','max');
head(dataHourly,4)

ans =

 3×1 timetable

 Timestamps AirTemperatureC
 ____________________ _______________

 03-Jan-2019 14:00:00 7.5
 03-Jan-2019 15:00:00 6.9
 03-Jan-2019 16:00:00 6.4

Send Data to ThingSpeak

Change the channelID and the writeAPIKey to send data to your channel

channelID=17504;
writeAPIKey='23ZLGOBBU9TWHG2H';
thingSpeakWrite(channelID,data,'writeKey',writeAPIKey);

See Also
retime | thingSpeakRead | thingSpeakWrite

5 Internet of Things (IoT) Data

5-2

Regularize Irregularly Sampled Data
This example shows how to regularize irregularly sampled data to have a constant time period
between measurements. You update timestamps of data read from a ThingSpeak™ channel to remove
irregularity, then write the data to a channel. Timestamp variations in measured data introduced due
to network latencies or hardware resets can affect data preprocessing and data analytics algorithms.
Many algorithms require regularly sampled data to work correctly.

Read Data from the Weather Station Channel

ThingSpeak channel 12397 contains data from the MathWorks® weather station, located in Natick,
Massachusetts. The data is collected once every minute. Field 4 of the channel contains air
temperature data. To check for irregularly sampled data, read the air temperature data from channel
12397 using the thingSpeakRead function.

data = thingSpeakRead(12397,'NumMin',60,'Fields',4,'outputFormat','timetable');

Check for Irregularly Sampled Data

The data for the last 60 minutes read from channel 12397 is stored in as a timetable. Use isregular
function to check if the channel data is regularly sampled. If data is irregularly sampled, generate a
regularly spaced time vector for the time period of interest. Generate a new time vector using
linspace with the startTime, stopTime, and the number of measurements.

regularFlag = isregular(data,'Time');

if ~regularFlag
 startTime = data.Timestamps(1);
 stopTime = data.Timestamps(end);
 newTimeVector = linspace(startTime,stopTime,height(data));
 data.Timestamps = newTimeVector;
end

Send Data to ThingSpeak

Send the processed data to a ThingSpeak channel using the thingSpeakWrite function.

% Change the channelID and the writeAPIKey to send data to your channel.
channelID=17504;
writeAPIKey='23ZLGOBBU9TWHG2H';
thingSpeakWrite(channelID,data,'WriteKey',writeAPIKey);

See Also
linspace | thingSpeakRead | thingSpeakWrite

 Regularize Irregularly Sampled Data

5-3

Plot Data Read from ThingSpeak Channel
This example shows how to read data from a public ThingSpeak™ channel and create a simple plot
visualization from the results.

Read Data from ThingSpeak Channel

ThingSpeak channel 102698 contains air quality data from a parking garage in Natick Massachusetts.
Field 5 is a measure of dust concentration.

[dustData,Timestamps]=thingSpeakRead(102698,'Fields',5,'NumPoints',3000);

Plot the Dust Concentration Over Time

Use plot to visualize the data. Use ylabel and title to add labels to your plot.

plot(Timestamps,dustData);
ylabel('Dust Concentration (ppm)');
title('MathWorks Air Quality Station, East Parking Garage');

During business days, you can see spikes in the dust concentration at times when cars arrive or
depart.

See Also
plot | thingSpeakRead | thingSpeakWrite | title | ylabel

5 Internet of Things (IoT) Data

5-4

Read ThingSpeak Data and Predict Battery Discharge Time
with Linear Fit

This example shows how to read battery data from a ThingSpeak™ channel and analyze the data to
determine the remaining battery life. Use a linear fit to predict the date that the battery will fail, and
then write the remaining time in days to another ThingSpeak Channel. You read data for a 12 V
battery connected to a microprocessor reporting its voltage to ThingSpeak every half hour. Then use
regression to predict the day and time when the battery will fail.

Read Data from ThingSpeak Channel

Start by storing channel and date information in variables, and then use thingSpeakRead to read
the data. Channel 592680 shows the scaled measurement of voltage from a 12 V battery. Use the
DateRange name-value pair to use a specific selection of data.

batteryChannelID = 592680;
startDate = datetime('Oct 20, 2018');
endDate = datetime('Oct 23, 2018');
batteryData = thingSpeakRead(batteryChannelID,'DateRange',[startDate endDate],'Outputformat','Timetable');

Convert the Data for Fitting and Plot

The channel stores raw data from the device. Convert the analog-to-digital converter (ADC)
measurement to voltage using the experimentally determined conversion factor 14.6324. Then use
scatter to generate a plot.

myVoltage = 14.6324 * batteryData.Voltage;
scatter(batteryData.Timestamps,myVoltage,'b');
ylabel('Voltage (V)');
hold on

 Read ThingSpeak Data and Predict Battery Discharge Time with Linear Fit

5-5

Fit the Data

The timetable datetime format is useful for reading and plotting. To fit the data, the datetime needs to
be in numeric format. Use datenum to convert the timestamps into a number of days, and subtract
the starting number to keep the values low. Use polyfit to perform linear regression on the data,
and polyval to evaluate the fit at the existing time values. Add the fit line to the previous plot.

battTimes = datenum(batteryData.Timestamps);
battTimes= battTimes-battTimes(1);
myFit=polyfit(battTimes,myVoltage,1);
fitLine=polyval(myFit,battTimes);
plot(batteryData.Timestamps,fitLine,'r--');

5 Internet of Things (IoT) Data

5-6

Predict Discharge Time

The battery should not be discharged below 10.4 V. Find the number of days until the fit line will
intersect with this voltage.

endDays = (10.4-myFit(2))/myFit(1)

endDays = 13.1573

There are just over 13 days until the battery dies.

Write Prediction to ThingSpeak

The thingSpeakWrite function writes the result to a ThingSpeak channel. Return the output from
thingSpeakWrite to ensure a successful write operation. Change the writeChannelID and
writeAPIKey to write to your own channel.

writeChannelID = 17504;
writeAPIKey='23ZLGOBBU9TWHG2H';
result = thingSpeakWrite(writeChannelID,round(endDays,4),'WriteKey',writeAPIKey)

result = struct with fields:
 Field1: '13.1573'
 Field2: []
 Field3: []
 Field4: []
 Field5: []
 Field6: []

 Read ThingSpeak Data and Predict Battery Discharge Time with Linear Fit

5-7

 Field7: []
 Field8: []
 Latitude: []
 Longitude: []
 ChannelID: 17504
 Created: 03-Jun-2019 15:24:43
 LastEntryID: 50018
 Altitude: []

The result shows the successful write operation and reports the data that was written.

See Also
datetime | datnum | polyfit | polyval | scatter | thingSpeakRead | thingSpeakWrite

5 Internet of Things (IoT) Data

5-8

Images

• “Importing Images” on page 6-2
• “Exporting to Images” on page 6-5

6

Importing Images
To import data into the MATLAB workspace from a graphics file, use the imread function. Using this
function, you can import data from files in many standard file formats, including the Tagged Image
File Format (TIFF), Graphics Interchange Format (GIF), Joint Photographic Experts Group (JPEG),
and Portable Network Graphics (PNG) formats. For a complete list of supported formats, see the
imread reference page.

This example reads the image data stored in a file in JPEG format into the MATLAB workspace as the
array I:

I = imread('ngc6543a.jpg');

imread represents the image in the workspace as a multidimensional array of class uint8. The
dimensions of the array depend on the format of the data. For example, imread uses three
dimensions to represent RGB color images:

whos I
 Name Size Bytes Class

 I 650x600x3 1170000 uint8 array

Grand total is 1170000 elements using 1170000 bytes

For more control over reading TIFF files, use the Tiff object—see “Reading Image Data and
Metadata from TIFF Files” on page 6-3 for more information.

Getting Information About Image Files
If you have a file in a standard graphics format, use the imfinfo function to get information about its
contents. The imfinfo function returns a structure containing information about the file. The fields
in the structure vary with the file format, but imfinfo always returns some basic information
including the file name, last modification date, file size, and format.

This example returns information about a file in Joint Photographic Experts Group (JPEG) format:

info = imfinfo('ngc6543a.jpg')

info =

 Filename: 'matlabroot\toolbox\matlab\demos\ngc6543a.jpg'
 FileModDate: '01-Oct-1996 16:19:44'
 FileSize: 27387
 Format: 'jpg'
 FormatVersion: ''
 Width: 600
 Height: 650
 BitDepth: 24
 ColorType: 'truecolor'
 FormatSignature: ''
 NumberOfSamples: 3
 CodingMethod: 'Huffman'
 CodingProcess: 'Sequential'
 Comment: {'CREATOR: XV Version 3.00b Rev: 6/15/94 Quality =...'}

6 Images

6-2

Reading Image Data and Metadata from TIFF Files
While you can use imread to import image data and metadata from TIFF files, the function does have
some limitations. For example, a TIFF file can contain multiple images and each images can have
multiple subimages. While you can read all the images from a multi-image TIFF file with imread, you
cannot access the subimages. Using the Tiff object, you can read image data, metadata, and
subimages from a TIFF file. When you construct a Tiff object, it represents your connection with a
TIFF file and provides access to many of the routines in the LibTIFF library.

A step-by-step example of using Tiff object methods and properties to read subimages from a TIFF
file follows. To get the most out of the Tiff object, familiarize yourself with the TIFF specification
and technical notes. See LibTIFF - TIFF Library and Utilities.

Reading Subimages from a TIFF File

A TIFF file can contain one or more image file directories (IFD). Each IFD contains image data and
the metadata (tags) associated with the image. Each IFD can contain one or more subIFDs, which
also can contain image data and metadata. These subimages are typically reduced-resolution
(thumbnail) versions of the image data in the IFD containing the subIFDs.

To read the subimages in an IFD, you must get the location of the subimage from the SubIFD tag. The
SubIFD tag contains an array of byte offsets that point to the subimages. You then can pass the
address of the subIFD to the setSubDirectory method to make the subIFD the current IFD. Most
Tiff object methods operate on the current IFD.

1 Open a TIFF file that contains images and subimages using the Tiff object constructor. This
example uses the TIFF file created in “Creating TIFF File Subdirectories” on page 6-8, which
contains one IFD directory with two subIFDs. The Tiff constructor opens the TIFF file, and
makes the first subIFD in the file the current IFD:

t = Tiff('my_subimage_file.tif','r');
2 Retrieve the locations of subIFDs associated with the current IFD. Use the getTag method to get

the value of the SubIFD tag. This method returns an array of byte offsets that specify the location
of subIFDs:

offsets = getTag(t,'SubIFD')
3 Navigate to the first subimage. First, set the currentIFD to the directory containing the first

subimage:

dirNum = 1;
setDirectory(t,dirNum);

4 Then, navigate to the first subIFD using the setSubDirectory method. Specify the byte offset
of the subIFD as an argument. This call makes the subIFD the current IFD:

setSubDirectory(t,offsets(1));
5 Read the image data from the current IFD (the first subIFD) the same way you read any other

IFD in the file:

subimage_one = read(t);
6 View the first subimage:

imagesc(subimage_one)
7 Navigate to the second subimage. First, reset the currentIFD to the directory containing the

second subimage:

setDirectory(t,dirNum);

 Importing Images

6-3

http://www.simplesystems.org/libtiff/

8 Then, navigate to the second subIFD using the setSubDirectory method. Specify the byte
offset of the second subIFD:

setSubDirectory(t,offsets(2));
9 Read the image data from the current IFD (the second subIFD) as you would with any other IFD

in the file:

subimage_two = read(t);
10 View the second subimage:

imagesc(subimage_two)
11 Close the Tiff object:

close(t);

See Also
Tiff

External Websites
• “Exporting to Images” on page 6-5

6 Images

6-4

Exporting to Images
To export data from the MATLAB workspace using one of the standard graphics file formats, use the
imwrite function. Using this function, you can export data in formats such as the Tagged Image File
Format (TIFF), Joint Photographic Experts Group (JPEG), and Portable Network Graphics (PNG). For
a complete list of supported formats, see the imwrite reference page.

The following example writes a multidimensional array of uint8 data I from the MATLAB workspace
into a file in TIFF format. The class of the output image written to the file depends on the format
specified. For most formats, if the input array is of class uint8, imwrite outputs the data as 8-bit
values. See the imwrite reference page for details.

whos I
 Name Size Bytes Class

 I 650x600x3 1170000 uint8 array

Grand total is 1170000 elements using 1170000 bytes
imwrite(I, 'my_graphics_file.tif','tif');

Note imwrite supports different syntaxes for several of the standard formats. For example, with
TIFF file format, you can specify the type of compression MATLAB uses to store the image. See the
imwrite reference page for details.

For more control writing data to a TIFF file, use the Tiff object—see “Exporting Image Data and
Metadata to TIFF Files” on page 6-5 for more information.

Exporting Image Data and Metadata to TIFF Files
While you can use imwrite to export image data and metadata (tags) to Tagged Image File Format
(TIFF) files, the function does have some limitations. For example, when you want to modify image
data or metadata in the file, you must write the all the data to the file. You cannot write only the
updated portion. Using the Tiff object, you can write portions of the image data and modify or add
individual tags to a TIFF file. When you construct a Tiff object, it represents your connection with a
TIFF file and provides access to many of the routines in the LibTIFF library.

The following sections provide step-by-step examples of using Tiff object methods and properties to
perform some common tasks with TIFF files. To get the most out of the Tiff object, you must be
familiar with the TIFF specification and technical notes. View this documentation at LibTIFF -
TIFF Library and Utilities.

Creating a New TIFF File

1 Create some image data. This example reads image data from a JPEG file included with MATLAB:

imgdata = imread('ngc6543a.jpg');
2 Create a new TIFF file by constructing a Tiff object, specifying the name of the new file as an

argument. To create a file you must specify either write mode ('w') or append mode ('a'):

t = Tiff('myfile.tif','w');

When you create a new TIFF file, the Tiff constructor creates a file containing an image file
directory (IFD). A TIFF file uses this IFD to organize all the data and metadata associated with a

 Exporting to Images

6-5

http://www.simplesystems.org/libtiff/
http://www.simplesystems.org/libtiff/

particular image. A TIFF file can contain multiple IFDs. The Tiff object makes the IFD it creates
the current IFD. Tiff object methods operate on the current IFD. You can navigate among IFDs
in a TIFF file and specify which IFD is the current IFD using Tiff object methods.

3 Set required TIFF tags using the setTag method of the Tiff object. These required tags specify
information about the image, such as its length and width. To break the image data into strips,
specify a value for the RowsPerStrip tag. To break the image data into tiles, specify values for
the TileWidth and TileLength tags. The example creates a structure that contains tag names
and values and passes that to setTag. You also can set each tag individually.

tagstruct.ImageLength = size(imgdata,1);
tagstruct.ImageWidth = size(imgdata,2);
tagstruct.Photometric = Tiff.Photometric.RGB;
tagstruct.BitsPerSample = 8;
tagstruct.SamplesPerPixel = 3;
tagstruct.RowsPerStrip = 16;
tagstruct.PlanarConfiguration = Tiff.PlanarConfiguration.Chunky;
tagstruct.Software = 'MATLAB';
tagstruct % display tagstruct
setTag(t,tagstruct)

For information about supported TIFF tags and how to set their values, see “Setting Tag Values”
on page 6-9. For example, the Tiff object supports properties that you can use to set the
values of certain properties. This example uses the Tiff object PlanarConfiguration
property to specify the correct value for the chunky configuration:
Tiff.PlanarConfiguration.Chunky.

4 Write the image data and metadata to the current directory using the write method of the Tiff
object.

write(t,imgdata);

If you wanted to put multiple images into your file, call the writeDirectory method right after
performing this write operation. The writeDirectory method sets up a new image file
directory in the file and makes this new directory the current directory.

5 Close your connection to the file by closing the Tiff object:

close(t);
6 Test that you created a valid TIFF file by using the imread function to read the file, and then

display the image:

imagesc(imread('myfile.tif'));

Writing a Strip or Tile of Image Data

Note You can only modify a strip or a tile of image data if the data is not compressed.

1 Open an existing TIFF file for modification by creating a Tiff object. This example uses the file
created in “Creating a New TIFF File” on page 6-5. The Tiff constructor returns a handle to a
Tiff object.

t = Tiff('myfile.tif','r+');
2 Generate some data to write to a strip in the image. This example creates a three-dimensional

array of zeros that is the size of a strip. The code uses the number of rows in a strip, the width of
the image, and the number of samples per pixel as dimensions. The array is an array of uint8
values.

6 Images

6-6

width = getTag(t,'ImageWidth');
height = getTag(t,'RowsPerStrip');
numSamples = getTag(t,'SamplesPerPixel');
stripData = zeros(height,width,numSamples,'uint8');

If the image data had a tiled layout, you would use the TileWidth and TileLength tags to
specify the dimensions.

3 Write the data to a strip in the file using the writeEncodedStrip method. Specify the index
number that identifies the strip you want to modify. The example picks strip 18 because it is
easier to see the change in the image.

writeEncodedStrip(t,18,stripData);

If the image had a tiled layout, you would use the writeEncodedTile method to modify the tile.
4 Close your connection to the file by closing the Tiff object.

close(t);
5 Test that you modified a strip of the image in the TIFF file by using the imread function to read

the file, and then display the image.

modified_imgdata = imread('myfile.tif');
imagesc(modified_imgdata)

Note the black strip across the middle of the image.

Modifying TIFF File Metadata (Tags)

1 Open an existing TIFF file for modification using the Tiff object. This example uses the file
created in “Creating a New TIFF File” on page 6-5. The Tiff constructor returns a handle to a
Tiff object.

t = Tiff('myfile.tif','r+');
2 Verify that the file does not contain the Artist tag, using the getTag method. This code should

issue an error message saying that it was unable to retrieve the tag.

artist_value = getTag(t,'Artist');
3 Add the Artist tag using the setTag method.

setTag(t,'Artist','Pablo Picasso');
4 Write the new tag data to the TIFF file using the rewriteDirectory method. Use the

rewriteDirectory method when modifying existing metadata in a file or adding new metadata
to a file.

rewriteDirectory(t);
5 Close your connection to the file by closing the Tiff object.

close(t);
6 Test your work by reopening the TIFF file and getting the value of the Artist tag, using the

getTag method.

t = Tiff('myfile.tif', 'r');

getTag(t,'Artist')

ans =

Pablo Picasso

 Exporting to Images

6-7

close(t);

Creating TIFF File Subdirectories

1 Create some image data. This example reads image data from a JPEG file included with MATLAB.
The example then creates two reduced-resolution (thumbnail) versions of the image data.

imgdata = imread('ngc6543a.jpg');
%
% Reduce number of pixels by a half.
img_half = imgdata(1:2:end,1:2:end,:);
%
% Reduce number of pixels by a third.
img_third = imgdata(1:3:end,1:3:end,:);

2 Create a new TIFF file by constructing a Tiff object and specifying the name of the new file as
an argument. To create a file you must specify either write mode ('w') or append mode ('a').
The Tiff constructor returns a handle to a Tiff object.

t = Tiff('my_subimage_file.tif','w');
3 Set required TIFF tags using the setTag method of the Tiff object. These required tags specify

information about the image, such as its length and width. To break the image data into strips,
specify a value for the RowsPerStrip tag. To break the image data into tiles, use the
TileWidth and TileLength tags. The example creates a structure that contains tag names and
values and passes that to setTag. You can also set each tag individually.

To create subdirectories, you must set the SubIFD tag, specifying the number of subdirectories
you want to create. Note that the number you specify isn't the value of the SubIFD tag. The
number tells the Tiff software to create a SubIFD that points to two subdirectories. The actual
value of the SubIFD tag will be the byte offsets of the two subdirectories.

tagstruct.ImageLength = size(imgdata,1);
tagstruct.ImageWidth = size(imgdata,2);
tagstruct.Photometric = Tiff.Photometric.RGB;
tagstruct.BitsPerSample = 8;
tagstruct.SamplesPerPixel = 3;
tagstruct.RowsPerStrip = 16;
tagstruct.PlanarConfiguration = Tiff.PlanarConfiguration.Chunky;
tagstruct.Software = 'MATLAB';
tagstruct.SubIFD = 2 ; % required to create subdirectories
tagstruct % display tagstruct
setTag(t,tagstruct)

For information about supported TIFF tags and how to set their values, see “Setting Tag Values”
on page 6-9. For example, the Tiff object supports properties that you can use to set the
values of certain properties. This example uses the Tiff object PlanarConfiguration
property to specify the correct value for the chunky configuration:
Tiff.PlanarConfiguration.Chunky.

4 Write the image data and metadata to the current directory using the write method of the Tiff
object.

write(t,imgdata);
5 Set up the first subdirectory by calling the writeDirectory method. The writeDirectory

method sets up the subdirectory and make the new directory the current directory. Because you
specified that you wanted to create two subdirectories, writeDirectory sets up a subdirectory.

writeDirectory(t);

6 Images

6-8

6 Set required tags, just as you did for the regular directory. According to the LibTIFF API, a
subdirectory cannot contain a SubIFD tag.

tagstruct2.ImageLength = size(img_half,1);
tagstruct2.ImageWidth = size(img_half,2);
tagstruct2.Photometric = Tiff.Photometric.RGB;
tagstruct2.BitsPerSample = 8;
tagstruct2.SamplesPerPixel = 3;
tagstruct2.RowsPerStrip = 16;
tagstruct2.PlanarConfiguration = Tiff.PlanarConfiguration.Chunky;
tagstruct2.Software = 'MATLAB';
tagstruct2 % display tagstruct2
setTag(t,tagstruct2)

7 Write the image data and metadata to the subdirectory using the write method of the Tiff
object.

write(t,img_half);
8 Set up the second subdirectory by calling the writeDirectory method. The writeDirectory

method sets up the subdirectory and makes it the current directory.

writeDirectory(t);
9 Set required tags, just as you would for any directory. According to the LibTIFF API, a

subdirectory cannot contain a SubIFD tag.

tagstruct3.ImageLength = size(img_third,1);
tagstruct3.ImageWidth = size(img_third,2);
tagstruct3.Photometric = Tiff.Photometric.RGB;
tagstruct3.BitsPerSample = 8;
tagstruct3.SamplesPerPixel = 3;
tagstruct3.RowsPerStrip = 16;
tagstruct3.PlanarConfiguration = Tiff.PlanarConfiguration.Chunky;
tagstruct3.Software = 'MATLAB';
tagstruct3 % display tagstruct3
setTag(t,tagstruct3)

10 Write the image data and metadata to the subdirectory using the write method of the Tiff
object:

write(t,img_third);
11 Close your connection to the file by closing the Tiff object:

close(t);

Setting Tag Values

The following table lists all the TIFF tags that the Tiff object supports and includes information
about their MATLAB class and size. For certain tags, the table also indicates the set of values that the
Tiff object supports, which is a subset of all the possible values defined by the TIFF specification.
You can use the Tiff properties structure to specify the supported values for these tags. For
example, use Tiff.Compression.JPEG to specify JPEG compression. See the Tiff reference page
for a full list of properties.

 Exporting to Images

6-9

Table 1: Supported TIFF Tags

TIFF Tag Class Size Supported Values Notes
Artist char 1xN
BitsPerSample double 1x1 1,8,16,32,64 See Table 2 on page 6-

14
ColorMap double 256x3 Values should be

normalized between
0–1. Stored internally
as uint16 values.

Photometric must be
Palette

Compression double 1x1 None: 1
CCITTRLE: 2
CCITTFax3: 3
CCITTFax4: 4
LZW: 5
JPEG: 7
CCITTRLEW: 32771
PackBits: 32773
Deflate: 32946
AdobeDeflate: 8

See Table 3 on page 6-
15.

Copyright char 1xN
DateTime char 1x19 Return value is

padded to 19 chars if
required.

DocumentName char 1xN
DotRange double 1x2 Photometric must be

Separated
ExtraSamples double 1xN Unspecified: 0

AssociatedAlpha: 1
UnassociatedAlpha
: 2

See Table 4 on page 6-
15.

FillOrder double 1x1
GeoAsciiParamsTag char 1xN
GeoDoubleParamsTag double 1xN
GeoKeyDirectoryTag double Nx4
Group3Options double 1x1 Compression must be

CCITTFax3
Group4Options double 1x1 Compression must be

CCITTFax4
HalfToneHints double 1x2
HostComputer char 1xn
ICCProfile uint8 1xn
ImageDescription char 1xn
ImageLength double 1x1

6 Images

6-10

TIFF Tag Class Size Supported Values Notes
ImageWidth double 1x1
InkNames char

cell
array

1x
NumInk
s

 Photometric must be
Separated

InkSet double 1x1 CMYK: 1
MultiInk: 2

Photometric must be
Separated

JPEGQuality double 1x1 A value between 1 and
100

Make char 1xn
MaxSampleValue double 1x1 0–65,535
MinSampleValue double 1x1 0–65,535
Model char 1xN
ModelPixelScaleTag double 1x3
ModelTiepointTag double Nx6
ModelTransformationMatrixTag double 1x16
NumberOfInks double 1x1 Must be equal to

SamplesPerPixel
Orientation double 1x1 TopLeft: 1

TopRight: 2
BottomRight: 3
BottomLeft: 4
LeftTop: 5
RightTop: 6
RightBottom: 7
LeftBottom: 8

PageName char 1xN
PageNumber double 1x2
Photometric double 1x1 MinIsWhite: 0

MinIsBlack: 1
RGB: 2
Palette: 3
Mask: 4
Separated: 5
YCbCr: 6
CIELab: 8
ICCLab: 9
ITULab: 10

See Table 2 on page 6-
14.

Photoshop uint8 1xN
PlanarConfiguration double 1x1 Chunky: 1

Separate: 2

PrimaryChromaticities double 1x6
ReferenceBlackWhite double 1x6

 Exporting to Images

6-11

TIFF Tag Class Size Supported Values Notes
ResolutionUnit double 1x1
RICHTIFFIPTC uint8 1xN
RowsPerStrip double 1x1
RPCCoefficientTag double 1x92 92-element row vector See Table 6 on page 6-

16
SampleFormat double 1x1 Uint: 1

Int: 2
IEEEFP: 3

See Table 2 on page 6-
13

SamplesPerPixel double 1x1
SMaxSampleValue double 1x1 Range of MATLAB

data type specified for
Image data

SMinSampleValue double 1x1 Range of MATLAB
data type specified for
Image data

Software char 1xN
StripByteCounts double 1xN Read-only
StripOffsets double 1xN Read-only
SubFileType double 1x1 Default : 0

ReducedImage: 1
Page: 2
Mask: 4

SubIFD double 1x1
TargetPrinter char 1xN
Thresholding double 1x1 BiLevel: 1

HalfTone: 2
ErrorDiffuse: 3

Photometric can be
either: MinIsWhite
MinIsBlack

TileByteCounts double 1xN Read-only
TileLength double 1x1 Must be a multiple of

16

TileOffsets double 1xN Read-only
TileWidth double 1x1 Must be a multiple of

16

TransferFunction double See
note1

Each value should be
within 0–2^16-1

SamplePerPixel can
be either 1 or 3

WhitePoint double 1x2 Photometric can be:
RGB
Palette
YCbCr
CIELab
ICCLab
ITULab

6 Images

6-12

TIFF Tag Class Size Supported Values Notes
XMP char 1xn N>5
XPostion double 1x1
XResolution double 1x1
YCbCrCoefficents double 1x3 Photometric must be

YCbCr
YCbCrPositioning double 1x1 Centered: 1

Cosited: 2
Photometric must be
YCbCr

YCbCrSubSampling double 1x2 Photometric must be
YCbCr

YPosition double 1x1
YResolution double 1x1
ZipQuality double 1x1 Value between 1 and 9

1Size is 1x2^BitsPerSample or3x2^BitsPerSample.

Table 2: Valid SampleFormat Values for BitsPerSample Settings

BitsPerSample SampleFormat MATLAB Data Type
1 Uint logical
8 Uint, Int uint8, int8
16 Uint, Int uint16, int16
32 Uint, Int, IEEEFP uint32, int32, single
64 IEEEFP double

 Exporting to Images

6-13

Table 3: Valid SampleFormat Values for BitsPerSample and Photometric Combinations

 BitsPerSample Values
Photometric
Values

1 8 16 32 64

MinIsWhite Uint Uint/Int Uint
Int

Uint
Int
IEEEFP

IEEEFP

MinIsBlack Uint Uint/Int Uint
Int

Uint
Int
IEEEFP

IEEEFP

RGB Uint Uint Uint
IEEEFP

IEEEFP

Pallette Uint Uint
Mask Uint
Separated Uint Uint Uint

IEEEFP
IEEEFP

YCbCr Uint Uint Uint
IEEEFP

IEEEFP

CIELab Uint Uint
ICCLab Uint Uint
ITULab Uint Uint

6 Images

6-14

Table 4: Valid SampleFormat Values for BitsPerSample and Compression Combinations

 BitsPerSample Values
Compression
Values

1 8 16 32 64

None Uint Uint
Int

Uint
Int

Uint
Int
IEEEFP

IEEEFP

CCITTRLE Uint
CCITTFax3 Uint
CCITTFax4 Uint
LZW Uint Uint

Int
Uint
Int

Uint
Int
IEEEFP

IEEEFP

JPEG Uint
Int

CCITTRLEW Uint
PackBits Uint Uint

Int
Uint
Int

Uint
Int
IEEEFP

IEEEFP

Deflate Uint Uint
Int

Uint
Int

Uint
Int
IEEEFP

IEEEFP

AdobeDeflate Uint Uint
Int

Uint
Int

Uint
Int
IEEEFP

IEEEFP

Table 5: Valid SamplesPerPixel Values for Photometric Settings

Photometric Values SamplesPerPixel1
MinIsWhite 1+
MinIsBlack 1+
RGB 3+
Pallette 1
Mask 1
Separated 1+
YCbCr 3
CIELab 3+
ICCLab 3+
ITULab 3+

 Exporting to Images

6-15

Table 6: List of RPCCoefficientTag Value Descriptions

Index Value in 92-Element
Vector

Value Descriptions1 Units

1 Root mean square bias error meters per horizontal axis
2 Root mean square random error meters per horizontal axis
3 Line offset pixels
4 Sample offset pixels
5 Geodetic latitude offset degrees
6 Geodetic longitude offset degrees
7 Geodetic height offset meters
8 Line scale factor pixels
9 Sample scale factor pixels
10 Geodetic latitude scale degrees
11 Geodetic longitude scale degrees
12 Geodetic height scale factor meters
13 through 32 Numerator coefficients of r(n), a

rational polynomial equation 2

33 through 52 Denominator coefficients of the
rational polynomial equation r(n)

53 through 72 Numerator coefficients of c(n), a
rational polynomial equation 2

73 through 92 Denominator coefficients of the
rational polynomial equation c(n)

1To specify the values in this vector using the RPCCoefficientTag object, see
RPCCoefficientTag in the Mapping Toolbox™.

2Equations r(n) and c(n) represent the normalized row and column values of a generic rigorous
projection model.

See Also
Tiff

External Websites
• “Importing Images” on page 6-2

6 Images

6-16

Scientific Data

• “Import CDF Files Using Low-Level Functions” on page 7-2
• “Represent CDF Time Values” on page 7-4
• “Import CDF Files Using High-Level Functions” on page 7-5
• “Export to CDF Files” on page 7-8
• “Map NetCDF API Syntax to MATLAB Syntax” on page 7-11
• “Import NetCDF Files and OPeNDAP Data” on page 7-13
• “Resolve Errors Reading OPeNDAP Data” on page 7-19
• “Export to NetCDF Files” on page 7-20
• “Importing Flexible Image Transport System (FITS) Files” on page 7-26
• “Importing HDF5 Files” on page 7-27
• “Exporting to HDF5 Files” on page 7-33
• “Working with Non-ASCII Characters in HDF5 Files” on page 7-40
• “Import HDF4 Files Programmatically” on page 7-43
• “Map HDF4 to MATLAB Syntax” on page 7-46
• “Import HDF4 Files Using Low-Level Functions” on page 7-47
• “About HDF4 and HDF-EOS” on page 7-50
• “Export to HDF4 Files” on page 7-51

7

Import CDF Files Using Low-Level Functions
This example shows how to use low-level functions to read data from a CDF file. The MATLAB® low-
level CDF functions correspond to routines in the CDF C API library. To use the MATLAB CDF low-
level functions effectively, you must be familiar with the CDF C interface.

Open CDF File

Open the sample CDF File, example.cdf.

cdfid = cdflib.open('example.cdf');

Get Information About File Contents

Use cdflib.inquire to get information about the number of variables in the file, the number of
global attributes, and the number of attributes with variable scope.

info = cdflib.inquire(cdfid)

info = struct with fields:
 encoding: 'IBMPC_ENCODING'
 majority: 'ROW_MAJOR'
 maxRec: 23
 numVars: 6
 numvAttrs: 1
 numgAttrs: 3

Get Information About Variables

Use cdflib.inqurieVar to get information about the individual variables in the file. Variable ID
numbers start at zero.

info = cdflib.inquireVar(cdfid,0)

info = struct with fields:
 name: 'Time'
 datatype: 'cdf_epoch'
 numElements: 1
 dims: []
 recVariance: 1
 dimVariance: []

info = cdflib.inquireVar(cdfid,1)

info = struct with fields:
 name: 'Longitude'
 datatype: 'cdf_int1'
 numElements: 1
 dims: [2 2]
 recVariance: 0
 dimVariance: [1 0]

7 Scientific Data

7-2

Read Variable Data Into Workspace

Read the data in a variable into the MATLAB workspace. The first variable contains CDF Epoch time
values. The low-level interface returns these as double values.

data_time = cdflib.getVarRecordData(cdfid,0,0)

data_time = 6.3146e+13

Convert the time value to a date vector.

timeVec = cdflib.epochBreakdown(data_time)

timeVec = 7×1

 2001
 1
 1
 0
 0
 0
 0

Read Global Attribute From File

Determine which attributes in the CDF file are global.

info = cdflib.inquireAttr(cdfid,0)

info = struct with fields:
 name: 'SampleAttribute'
 scope: 'GLOBAL_SCOPE'
 maxgEntry: 4
 maxEntry: -1

Read the value of the attribute. You must use the cdflib.getAttrgEntry function for global
attributes.

value = cdflib.getAttrgEntry(cdfid,0,0)

value =
'This is a sample entry.'

Close CDF File

Use cdflib.close to close the CDF file.

cdflib.close(cdfid);

See Also
cdflib | cdfread

External Websites
• CDF website

 Import CDF Files Using Low-Level Functions

7-3

https://cdf.gsfc.nasa.gov/

Represent CDF Time Values
This example shows how to extract date information from a CDF epoch object. CDF represents time
differently than MATLAB®. CDF represents date and time as the number of milliseconds since 1-
Jan-0000. This is called an epoch in CDF terminology. To represent CDF dates, MATLAB uses an
object called a CDF epoch object. MATLAB also can represent a date and time as a datetime value or
as a serial date number, which is the number of days since 0-Jan-0000. To access the time information
in a CDF object, convert to one of these other representations.

Read the sample CDF file, example.cdf.

data = cdfread('example.cdf');
whos

 Name Size Bytes Class Attributes

 data 24x6 23904 cell

cdfread returns a cell array.

Extract the date information from the first CDF epoch object returned in the cell array, data, using
the todatenum function.

m_datenum = todatenum(data{1})

m_datenum = 730852

Convert the MATLAB serial date number to a datetime value.

m_datetime = datetime(m_datenum,'ConvertFrom','datenum')

m_datetime = datetime
 01-Jan-2001

See Also
cdfread | datetime | todatenum

7 Scientific Data

7-4

Import CDF Files Using High-Level Functions
This example shows how to use high-level MATLAB® functions to import the sample CDF file,
example.cdf. High-level functions provide a simpler interface to accessing CDF files.

Get Information About Contents of CDF File

Get information about the contents of a CDF file using the cdfinfo function. Because cdfinfo
creates temporary files, ensure that your current folder is writable before using the function.

info = cdfinfo('example.cdf')

info = struct with fields:
 Filename: 'example.cdf'
 FileModDate: '10-May-2010 21:35:01'
 FileSize: 1310
 Format: 'CDF'
 FormatVersion: '2.7.0'
 FileSettings: [1x1 struct]
 Subfiles: {}
 Variables: {6x6 cell}
 GlobalAttributes: [1x1 struct]
 VariableAttributes: [1x1 struct]

cdfinfo returns a structure containing general information about the file and detailed information
about the variables and attributes in the file. In this example, the Variables field indicates the
number of variables in the file.

View the contents of the Variables field.

vars = info.Variables

vars=6×6 cell array
 Columns 1 through 5

 {'Time' } {1x2 double} {[24]} {'epoch' } {'T/' }
 {'Longitude' } {1x2 double} {[1]} {'int8' } {'F/FT' }
 {'Latitude' } {1x2 double} {[1]} {'int8' } {'F/TF' }
 {'Data' } {1x3 double} {[1]} {'double'} {'T/TTT' }
 {'multidimensional'} {1x4 double} {[1]} {'uint8' } {'T/TTTT'}
 {'Temperature' } {1x2 double} {[10]} {'int16' } {'T/TT' }

 Column 6

 {'Full'}
 {'Full'}
 {'Full'}
 {'Full'}
 {'Full'}
 {'Full'}

The first variable, Time, consists of 24 records containing CDF epoch data. The next two variables,
Longitude and Latitude, each have only one associated record containing int8 data.

 Import CDF Files Using High-Level Functions

7-5

Read All Data from CDF File

Use the cdfread function to read all of the data in the CDF file.

data = cdfread('example.cdf');
whos data

 Name Size Bytes Class Attributes

 data 24x6 23904 cell

cdfread returns the data in a cell array. The columns of data correspond to the variables. The rows
correspond to the records associated with a variable.

Read Data from Specific Variables

Read only the Longitude and Latitude variables from the CDF file. To read the data associated
with particular variables, use the 'Variable' parameter. Specify the names of the variables in a cell
array of character vectors. Variable names are case sensitive.

var_long_lat = cdfread('example.cdf','Variable',{'Longitude','Latitude'});
whos var_long_lat

 Name Size Bytes Class Attributes

 var_long_lat 1x2 216 cell

Combine Records to Speed Up Read Operations

By default, cdfread creates a cell array with a separate element for every variable and every record
in each variable, padding the records dimension to create a rectangular cell array. When working
with large data sets, you can speed up read operations by specifying the 'CombineRecords'
parameter to reduce the number of elements in the cell array that cdfread returns. When you set
the 'CombineRecords' parameter to true, the cdfread function creates a separate element for
each variable but saves time by putting all the records associated with a variable in a single cell array
element.

data_combined = cdfread('example.cdf','CombineRecords',true);

Compare the sizes of the cell arrays returned by cdfread.

whos data*

 Name Size Bytes Class Attributes

 data 24x6 23904 cell
 data_combined 1x6 8080 cell

Reading all the data from the example file without the CombineRecords parameter returns a 24-by-6
cell array, where the columns represent variables and the rows represent the records for each
variable. Reading the data from the same file with 'CombineRecords' set to true returns a 1-by-6
cell array.

When combining records, the dimensions of the data in the cell change. In this example, the Time
variable has 24 records, each of which is a scalar value. In the data_combined cell array, the
combined element contains a 24-by-1 vector of values.

7 Scientific Data

7-6

Read CDF Epoch Values as Serial Date Numbers

By default, cdfread creates a MATLAB cdfepoch object for each CDF epoch value in the file. Speed
up read operations by setting the 'ConvertEpochToDatenum' name-value pair argument to true, to
return CDF epoch values as MATLAB serial date numbers.

data_datenums = cdfread('example.cdf','ConvertEpochToDatenum',true);
whos data*

 Name Size Bytes Class Attributes

 data 24x6 23904 cell
 data_combined 1x6 8080 cell
 data_datenums 24x6 19872 cell

See Also
cdfinfo | cdfread

External Websites
• CDF website

 Import CDF Files Using High-Level Functions

7-7

https://cdf.gsfc.nasa.gov/

Export to CDF Files
This example shows how to export data to a CDF file using MATLAB® CDF low-level functions. The
MATLAB functions correspond to routines in the CDF C API library.

To use the MATLAB CDF low-level functions effectively, you must be familiar with the CDF C
interface. Also, CDF files do not support non-ASCII encoded inputs. Therefore, variable names,
attributes names, variable values, and attribute values must have 7-bit ASCII encoding.

Create New CDF File

Create a new CDF file named my_file.cdf using cdflib.create. This function corresponds to the
CDF library C API routine, CDFcreateCDF.

cdfid = cdflib.create('my_file.cdf');

cdflib.create returns a file identifier, cdfid.

Create Variables in CDF File

Create variables named Time and Latitude using cdflib.createVar. This function corresponds
to the CDF library C API routine, CDFcreatezVar.

time_id = cdflib.createVar(cdfid,'Time','cdf_int4',1,[],true,[]);
lat_id = cdflib.createVar(cdfid,'Latitude','cdf_int2',1,181,true,true);

cdflib.createVar returns a numeric identifier for each variable.

Create a variable named Image.

dimSizes = [20 10];
image_id = cdflib.createVar(cdfid,'Image','cdf_int4',1,...
 dimSizes,true,[true true]);

Write to Variables

Write data to the first and second records of the Time variable. Record numbers are zero-based. The
cdflib.putVarRecordData function corresponds to the CDF library C API routine,
CDFputzVarRecordData.

cdflib.putVarRecordData(cdfid,time_id,0,int32(23));
cdflib.putVarRecordData(cdfid,time_id,1,int32(24));

Write data to the Latitude variable.

data = int16([-90:90]);
recspec = [0 1 1];
dimspec = { 0 181 1 };
cdflib.hyperPutVarData(cdfid,lat_id,recspec,dimspec,data);

Write data to the Image variable.

recspec = [0 3 1];
dimspec = { [0 0], [20 10], [1 1] };
data = reshape(int32([0:599]), [20 10 3]);
cdflib.hyperPutVarData(cdfid,image_id,recspec,dimspec,data);

7 Scientific Data

7-8

Write to Global Attribute

Create a global attribute named TITLE using cdflib.createAttr. This function corresponds to the
CDF library C API routine, CDFcreateAttr.

titleAttrNum = cdflib.createAttr(cdfid,'TITLE','global_scope');

cdflib.createAttr returns a numeric identifier for the attribute. Attribute numbers are zero-
based.

Write values to entries in the global attribute.

cdflib.putAttrEntry(cdfid,titleAttrNum,0,'CDF_CHAR','cdf Title');
cdflib.putAttrEntry(cdfid,titleAttrNum,1,'CDF_CHAR','Author');

Write to Attributes Associated with Variables

Create attributes associated with variables in the CDF file.

fieldAttrNum = cdflib.createAttr(cdfid,'FIELDNAM','variable_scope');
unitsAttrNum = cdflib.createAttr(cdfid,'UNITS','variable_scope');

Write to attributes of the Time variable.

cdflib.putAttrEntry(cdfid,fieldAttrNum,time_id,...
 'CDF_CHAR','Time of observation');
cdflib.putAttrEntry(cdfid,unitsAttrNum,time_id,...
 'CDF_CHAR','Hours');

Get Information About CDF File

Get information about the file using cdflib.inquire. This function corresponds to the CDF library
C API routines, CDFinquireCDF and CDFgetNumgAttributes.

info = cdflib.inquire(cdfid)

info = struct with fields:
 encoding: 'IBMPC_ENCODING'
 majority: 'ROW_MAJOR'
 maxRec: 2
 numVars: 3
 numvAttrs: 2
 numgAttrs: 1

cdflib.inquire returns a structure array that includes information about the data encoding and
the number of variables and attributes in the file.

Close CDF File

Close the CDF File using cdflib.close. This function corresponds to the CDF library C API routine,
CDFcloseCDF. You must close a CDF to guarantee that all modifications you made since opening the
CDF are written to the file.

cdflib.close(cdfid);

See Also
cdflib

 Export to CDF Files

7-9

External Websites
• CDF website

7 Scientific Data

7-10

https://cdf.gsfc.nasa.gov/

Map NetCDF API Syntax to MATLAB Syntax
MATLAB netcdf package of low-level functions and its correspondence with the NetCDF C library.

MATLAB provides access to the routines in the NetCDF C library through a set of low-level functions
that are grouped into a package called netcdf. Use the functions in this package to read and write
data to and from NetCDF files. To use the MATLAB NetCDF functions effectively, you should be
familiar with the NetCDF C interface.

Usually, the MATLAB functions in the netcdf package correspond directly to routines in the NetCDF
C library. For example, the MATLAB function netcdf.open corresponds to the NetCDF library
routine nc_open. In some cases, one MATLAB function corresponds to a group of NetCDF library
functions. For example, instead of creating MATLAB versions of every NetCDF library
nc_put_att_type function, where type represents a data type, MATLAB uses one function,
netcdf.putAtt, to handle all supported data types.

To call one of the functions in the netcdf package, you must prefix the function name with the
package name. The syntax of the MATLAB functions is similar to the NetCDF library routines.
However, the NetCDF C library routines use input parameters to return data, while their MATLAB
counterparts use one or more return values. For example, this is the function signature of the
nc_open routine in the NetCDF library:

int nc_open (const char *path, int omode, int *ncidp); /* C syntax */

The NetCDF file identifier is returned in the ncidp argument.

This is the signature of the corresponding MATLAB function, netcdf.open:

ncid = netcdf.open(filename, mode)

Like its NetCDF C library counterpart, the MATLAB NetCDF function accepts a file name and a
constant that specifies the access mode. However, that the MATLAB netcdf.open function returns
the file identifier, ncid, as a return value.

The MATLAB NetCDF functions automatically choose the MATLAB class that best matches the
NetCDF data type. This table shows the default mapping.

NetCDF Data Type MATLAB Class
'NC_BYTE' int8 or uint8a

'NC_CHAR' char
'NC_SHORT' int16
'NC_INT' int32
'NC_FLOAT' single
'NC_DOUBLE' double
a. NetCDF interprets byte data as either signed or unsigned.

You can override the default and specify the class of the return data by using an optional argument to
the netcdf.getVar function.

 Map NetCDF API Syntax to MATLAB Syntax

7-11

See Also

More About
• “Import NetCDF Files and OPeNDAP Data” on page 7-13
• “Export to NetCDF Files” on page 7-20

External Websites
• NetCDF website

7 Scientific Data

7-12

https://www.unidata.ucar.edu/software/netcdf/

Import NetCDF Files and OPeNDAP Data
Read data from a NetCDF file using the high-level functions, and then read the file by using the
netcdf package low-level functions.

In this section...
“MATLAB NetCDF Capabilities” on page 7-13
“Read from NetCDF File Using High-Level Functions” on page 7-13
“Find All Unlimited Dimensions in NetCDF File” on page 7-15
“Read from NetCDF File Using Low-Level Functions” on page 7-16

MATLAB NetCDF Capabilities
Network Common Data Form (NetCDF) is a set of software libraries and machine-independent data
formats that support the creation, access, and sharing of array-oriented scientific data. NetCDF is
used by a wide range of engineering and scientific fields that want a standard way to store data so
that it can be shared.

MATLAB high-level functions simplify the process of importing data from a NetCDF file or an
OPeNDAP NetCDF data source. MATLAB low-level functions enable more control over the importing
process, by providing access to the routines in the NetCDF C library. To use the low-level functions
effectively, you should be familiar with the NetCDF C Interface. The NetCDF documentation is
available at the Unidata website.

Note For information about importing Common Data Format (CDF) files, which have a separate,
incompatible format, see “Import CDF Files Using Low-Level Functions” on page 7-2.

Read from NetCDF File Using High-Level Functions
This example shows how to display and read the contents of a NetCDF file, using high-level functions.

Display the contents of the sample NetCDF file, example.nc.

ncdisp('example.nc')

Source:
 \\matlabroot\toolbox\matlab\demos\example.nc
Format:
 netcdf4
Global Attributes:
 creation_date = '29-Mar-2010'
Dimensions:
 x = 50
 y = 50
 z = 5
Variables:
 avagadros_number
 Size: 1x1
 Dimensions:
 Datatype: double
 Attributes:

 Import NetCDF Files and OPeNDAP Data

7-13

https://www.unidata.ucar.edu/software/netcdf/

 description = 'this variable has no dimensions'
 temperature
 Size: 50x1
 Dimensions: x
 Datatype: int16
 Attributes:
 scale_factor = 1.8
 add_offset = 32
 units = 'degrees_fahrenheight'
 peaks
 Size: 50x50
 Dimensions: x,y
 Datatype: int16
 Attributes:
 description = 'z = peaks(50);'
Groups:
 /grid1/
 Attributes:
 description = 'This is a group attribute.'
 Dimensions:
 x = 360
 y = 180
 time = 0 (UNLIMITED)
 Variables:
 temp
 Size: []
 Dimensions: x,y,time
 Datatype: int16

 /grid2/
 Attributes:
 description = 'This is another group attribute.'
 Dimensions:
 x = 360
 y = 180
 time = 0 (UNLIMITED)
 Variables:
 temp
 Size: []
 Dimensions: x,y,time
 Datatype: int16

ncdisp displays all the groups, dimensions, and variable definitions in the file. Unlimited dimensions
are identified with the label, UNLIMITED.

Read data from the peaks variable.

peaksData = ncread('example.nc','peaks');

Display information about the peaksData output.

whos peaksData

 Name Size Bytes Class Attributes

 peaksData 50x50 5000 int16

Read the description attribute associated with the variable.

7 Scientific Data

7-14

peaksDesc = ncreadatt('example.nc','peaks','description')

peaksDesc =

z = peaks(50);

Create a three-dimensional surface plot of the variable data. Use the value of the description
attribute as the title of the figure.

surf(double(peaksData))
title(peaksDesc);

Read the description attribute associated with the /grid1/ group. Specify the group name as the
second input to the ncreadatt function.

g = ncreadatt('example.nc','/grid1/','description')

g =

This is a group attribute.

Read the global attribute, creation_date. For global attributes, specify the second input argument
to ncreadatt as '/'.

creation_date = ncreadatt('example.nc','/','creation_date')

creation_date =

29-Mar-2010

Find All Unlimited Dimensions in NetCDF File
This example shows how to find all unlimited dimensions in a group in a NetCDF file, using high-level
functions.

Get information about the /grid2/ group in the sample file, example.nc, using the ncinfo
function.

ginfo = ncinfo('example.nc','/grid2/')

ginfo =

 Filename: '\\matlabroot\toolbox\matlab\demos\example.nc'
 Name: 'grid2'
 Dimensions: [1x3 struct]
 Variables: [1x1 struct]
 Attributes: [1x1 struct]
 Groups: []
 Format: 'netcdf4'

ncinfo returns a structure array containing information about the group.

Get a vector of the Boolean values that indicate the unlimited dimensions for this group.

unlimDims = [ginfo.Dimensions.Unlimited]

 Import NetCDF Files and OPeNDAP Data

7-15

unlimDims =

 0 0 1

Use the unlimDims vector to display the unlimited dimension.

disp(ginfo.Dimensions(unlimDims))

 Name: 'time'
 Length: 0
 Unlimited: 1

Read from NetCDF File Using Low-Level Functions
This example shows how to get information about the dimensions, variables, and attributes in a
NetCDF file using MATLAB low-level functions in the netcdf package. To use these functions
effectively, you should be familiar with the NetCDF C Interface.

Open NetCDF File

Open the sample NetCDF file, example.nc, using the netcdf.open function, with read-only access.

ncid = netcdf.open('example.nc','NC_NOWRITE')

ncid = 65536

netcdf.open returns a file identifier.

Get Information About NetCDF File

Get information about the contents of the file using the netcdf.inq function. This function
corresponds to the nc_inq function in the NetCDF library C API.

[ndims,nvars,natts,unlimdimID] = netcdf.inq(ncid)

ndims = 3

nvars = 3

natts = 1

unlimdimID = -1

netcdf.inq returns the number of dimensions, variables, and global attributes in the file, and
returns the identifier of the unlimited dimension in the file. An unlimited dimension can grow.

Get the name of the global attribute in the file using the netcdf.inqAttName function. This function
corresponds to the nc_inq_attname function in the NetCDF library C API. To get the name of an
attribute, you must specify the ID of the variable the attribute is associated with and the attribute
number. To access a global attribute, which is not associated with a particular variable, use the
constant 'NC_GLOBAL' as the variable ID.

global_att_name = netcdf.inqAttName(ncid,...
 netcdf.getConstant('NC_GLOBAL'),0)

global_att_name =
'creation_date'

7 Scientific Data

7-16

Get information about the data type and length of the attribute using the netcdf.inqAtt function.
This function corresponds to the nc_inq_att function in the NetCDF library C API. Again, specify
the variable ID using netcdf.getConstant('NC_GLOBAL').

[xtype,attlen] = netcdf.inqAtt(ncid,...
 netcdf.getConstant('NC_GLOBAL'),global_att_name)

xtype = 2

attlen = 11

Get the value of the attribute, using the netcdf.getAtt function.

global_att_value = netcdf.getAtt(ncid,...
 netcdf.getConstant('NC_GLOBAL'),global_att_name)

global_att_value =
'29-Mar-2010'

Get information about the first dimension in the file, using the netcdf.inqDim function. This
function corresponds to the nc_inq_dim function in the NetCDF library C API. The second input to
netcdf.inqDim is the dimension ID, which is a zero-based index that identifies the dimension. The
first dimension has the index value 0.

[dimname,dimlen] = netcdf.inqDim(ncid,0)

dimname =
'x'

dimlen = 50

netcdf.inqDim returns the name and length of the dimension.

Get information about the first variable in the file using the netcdf.inqVar function. This function
corresponds to the nc_inq_var function in the NetCDF library C API. The second input to
netcdf.inqVar is the variable ID, which is a zero-based index that identifies the variable. The first
variable has the index value 0.

[varname,vartype,dimids,natts] = netcdf.inqVar(ncid,0)

varname =
'avagadros_number'

vartype = 6

dimids =

 []

natts = 1

netcdf.inqVar returns the name, data type, dimension ID, and the number of attributes associated
with the variable. The data type information returned in vartype is the numeric value of the NetCDF
data type constants, such as, NC_INT and NC_BYTE. See the NetCDF documentation for information
about these constants.

 Import NetCDF Files and OPeNDAP Data

7-17

Read Data from NetCDF File

Read the data associated with the variable, avagadros_number, in the example file, using the
netcdf.getVar function. The second input to netcdf.getVar is the variable ID, which is a zero-
based index that identifies the variable. The avagadros_number variable has the index value 0.

A_number = netcdf.getVar(ncid,0)

A_number = 6.0221e+23

View the data type of A_number.

whos A_number

 Name Size Bytes Class Attributes

 A_number 1x1 8 double

The functions in the netcdf package automatically choose the MATLAB class that best matches the
NetCDF data type, but you can also specify the class of the return data by using an optional argument
to netcdf.getVar.

Read the data associated with avagadros_number and return the data as class single.

A_number = netcdf.getVar(ncid,0,'single');
whos A_number

 Name Size Bytes Class Attributes

 A_number 1x1 4 single

Close NetCDF File

Close the NetCDF file, example.nc.

netcdf.close(ncid)

See Also
ncdisp | ncinfo | ncread | ncreadatt

More About
• “Map NetCDF API Syntax to MATLAB Syntax” on page 7-11

External Websites
• NetCDF C Interface

7 Scientific Data

7-18

https://www.unidata.ucar.edu/software/netcdf/

Resolve Errors Reading OPeNDAP Data
When you have trouble reading OPeNDAP data, consider these factors.

• OPeNDAP data is being pulled over the network from a server on the Internet. Pulling large data
could be slow. Speed and reliability depends on their network connection

• OPeNDAP capability does not support proxy servers or any authentication
• Failure to open an OPeNDAP link could have multiple causes:

• Invalid URL
• Local machine firewall/network firewall does not allow any external connections.
• Local machine firewall/network firewall does not allow external connections on the OPeNDAP

protocol.
• Remote server is down.
• Remote server will not serve the amount of data being requested. In this case, you can read

data in subsets or chunks.
• Remote server is incorrectly configured.

 Resolve Errors Reading OPeNDAP Data

7-19

Export to NetCDF Files
Create, merge, and write NetCDF files using high-level functions and the netcdf package low-level
functions.

In this section...
“MATLAB NetCDF Capabilities” on page 7-20
“Create New NetCDF File From Existing File or Template” on page 7-20
“Merge Two NetCDF Files” on page 7-21
“Write Data to NetCDF File Using Low-Level Functions” on page 7-23

MATLAB NetCDF Capabilities
Network Common Data Form (NetCDF) is a set of software libraries and machine-independent data
formats that support the creation, access, and sharing of array-oriented scientific data. NetCDF is
used by a wide range of engineering and scientific fields that want a standard way to store data so
that it can be shared.

MATLAB high-level functions make it easy to export data to a netCDF file. MATLAB low-level
functions provide access to the routines in the NetCDF C library. To use the low-level functions
effectively, you should be familiar with the NetCDF C Interface. The NetCDF documentation is
available at the Unidata website.

Note For information about exporting to Common Data Format (CDF) files, which have a separate
and incompatible format, see “Export to CDF Files” on page 7-8.

Create New NetCDF File From Existing File or Template
This example shows how to create a new NetCDF file that contains the variable, dimension, and
group definitions of an existing file, but uses a different format.

Create a file containing one variable, using the nccreate function.

nccreate('myfile.nc','myvar')

Write data to the file.

A = 99;
ncwrite('myfile.nc','myvar',A)

Read the variable, dimension, and group definitions from the file using ncinfo. This information
defines the file's schema.

S = ncinfo('myfile.nc');

Get the format of the file.

file_fmt = S.Format

file_fmt =
'netcdf4_classic'

7 Scientific Data

7-20

https://www.unidata.ucar.edu/software/netcdf/

Change the value of the Format field in the structure, S, to another supported NetCDF format.

S.Format = 'netcdf4';

Create a new version of the file that uses the new format, using the ncwriteschema function. A
schema defines the structure of the file but does not contain any of the data that was in the original
file.

ncwriteschema('newfile.nc',S)
S = ncinfo('newfile.nc');

Note: When you convert a file's format using ncwriteschema, you might get a warning message if
the original file format includes fields that are not supported by the new format. For example, the
netcdf4 format supports fill values but the NetCDF classic format does not. In these cases,
ncwriteschema still creates the file, but omits the field that is undefined in the new format.

View the format of the new file.

new_fmt = S.Format

new_fmt =
'netcdf4'

The new file, newfile.nc, contains the variable and dimension definitions of myfile.nc, but does
not contain the data.

Write data to the new file.

ncwrite('newfile.nc','myvar',A)

Merge Two NetCDF Files
This example shows how to merge two NetCDF files using high-level functions. The combined file
contains the variable and dimension definitions of the files that are combined, but does not contain
the data in these original files.

Create a NetCDF file named ex1.nc and define a variable named myvar. Then, write data to the
variable and display the file contents.

nccreate('ex1.nc','myvar');
ncwrite('ex1.nc','myvar',55)
ncdisp('ex1.nc')

Source:
 pwd\ex1.nc
Format:
 netcdf4_classic
Variables:
 myvar
 Size: 1x1
 Dimensions:
 Datatype: double

Create a second file and define a variable named myvar2. Then, write data to the variable and display
the file contents.

 Export to NetCDF Files

7-21

nccreate('ex2.nc','myvar2');
ncwrite('ex2.nc','myvar2',99)
ncdisp('ex2.nc')

Source:
 pwd\ex2.nc
Format:
 netcdf4_classic
Variables:
 myvar2
 Size: 1x1
 Dimensions:
 Datatype: double

Get the schema of each of the files, using the ncinfo function.

info1 = ncinfo('ex1.nc')

info1 =

 Filename: 'pwd\ex1.nc'
 Name: '/'
 Dimensions: []
 Variables: [1x1 struct]
 Attributes: []
 Groups: []
 Format: 'netcdf4_classic'

info2 = ncinfo('ex2.nc')

info2 =

 Filename: 'pwd\ex2.nc'
 Name: '/'
 Dimensions: []
 Variables: [1x1 struct]
 Attributes: []
 Groups: []
 Format: 'netcdf4_classic'

Create a new NetCDF file that uses the schema of the first example file, using the ncwriteschema
function. Then, display the file contents.

ncwriteschema('combined.nc',info1)
ncdisp('combined.nc')

Source:
 pwd\combined.nc
Format:
 netcdf4_classic
Variables:
 myvar
 Size: 1x1
 Dimensions:
 Datatype: double
 Attributes:
 _FillValue = 9.969209968386869e+36

Add the schema from ex2.nc to combined.nc, using ncwriteschema.

7 Scientific Data

7-22

ncwriteschema('combined.nc',info2)

View the contents of the combined file.

ncdisp('combined.nc')

Source:
 pwd\combined.nc
Format:
 netcdf4_classic
Variables:
 myvar
 Size: 1x1
 Dimensions:
 Datatype: double
 Attributes:
 _FillValue = 9.969209968386869e+36
 myvar2
 Size: 1x1
 Dimensions:
 Datatype: double
 Attributes:
 _FillValue = 9.969209968386869e+36

The file contains the myvar variable defined in the first example file and the myvar2 variable defined
in the second file.

Write Data to NetCDF File Using Low-Level Functions
This example shows how to use low-level functions to write data to a NetCDF file. The MATLAB® low-
level functions provide access to the routines in the NetCDF C library. MATLAB groups the functions
into a package, called netcdf. To call one of the functions in the package, you must prefix the
function name with the package name.

To use the MATLAB NetCDF functions effectively, you should be familiar with the information about
the NetCDF C Interface.

To run this example, you must have write permission in your current folder.

Create a 1-by-50 variable of numeric values named my_data in the MATLAB workspace. The vector is
of class double.

my_data = linspace(0,49,50);

Create a NetCDF file named my_file.nc, using the netcdf.create function. The NOCLOBBER
parameter is a NetCDF file access constant that indicates that you do not want to overwrite an
existing file with the same name.

ncid = netcdf.create('my_file.nc','NOCLOBBER');

netcdf.create returns a file identifier, ncid. When you create a NetCDF file, the file opens in
define mode. You must be in define mode to define dimensions and variables.

Define a dimension in the file, using the netcdf.defDim function. This function corresponds to the
nc_def_dim function in the NetCDF library C API. You must define dimensions in the file before you
can define variables and write data to the file. In this case, define a dimension named my_dim with
length 50.

 Export to NetCDF Files

7-23

dimid = netcdf.defDim(ncid,'my_dim',50)

dimid = 0

netcdf.defDim returns a dimension identifier that corresponds to the new dimension. Identifiers
are zero-based indexes.

Define a variable named my_var on the dimension, using the netcdf.defVar function. This function
corresponds to the nc_def_var function in the NetCDF library C API. Specify the NetCDF data type
of the variable, in this case, NC_BYTE.

varid = netcdf.defVar(ncid,'my_var','NC_BYTE',dimid)

varid = 0

netcdf.defVar returns a variable identifier that corresponds to my_var.

Take the NetCDF file out of define mode. To write data to a file, you must be in data mode.

netcdf.endDef(ncid)

Write the data from the MATLAB workspace into the variable in the NetCDF file, using the
netcdf.putVar function. The data in the workspace is of class double but the variable in the
NetCDF file is of type NC_BYTE. The MATLAB NetCDF functions automatically do the conversion.

netcdf.putVar(ncid,varid,my_data)

Close the file, using the netcdf.close function.

netcdf.close(ncid)

Verify that the data was written to the file by opening the file and reading the data from the variable
into a new variable in the MATLAB workspace.

ncid2 = netcdf.open('my_file.nc','NC_NOWRITE');
x = netcdf.getVar(ncid2,0);

View the data type of x.

whos x

 Name Size Bytes Class Attributes

 x 50x1 50 int8

MATLAB stores data in column-major order while the NetCDF C API uses row-major order. x
represents the data stored in the NetCDF file and is therefore 50-by-1 even though the original vector
in the MATLAB workspace, my_data, is 1-by-50. Because you stored the data in the NetCDF file as
NC_BYTE, MATLAB reads the data from the variable into the workspace as class int8.

Close the file.

netcdf.close(ncid2)

7 Scientific Data

7-24

See Also

More About
• “Map NetCDF API Syntax to MATLAB Syntax” on page 7-11

External Websites
• NetCDF C Interface

 Export to NetCDF Files

7-25

https://www.unidata.ucar.edu/software/netcdf/

Importing Flexible Image Transport System (FITS) Files
The FITS file format is the standard data format used in astronomy, endorsed by both NASA and the
International Astronomical Union (IAU). For more information about the FITS standard, go to the
FITS Web site, https://fits.gsfc.nasa.gov/.

The FITS file format is designed to store scientific data sets consisting of multidimensional arrays (1-
D spectra, 2-D images, or 3-D data cubes) and two-dimensional tables containing rows and columns of
data. A data file in FITS format can contain multiple components, each marked by an ASCII text
header followed by binary data. The first component in a FITS file is known as the primary, which can
be followed by any number of other components, called extensions, in FITS terminology. For a
complete list of extensions, see fitsread.

To get information about the contents of a Flexible Image Transport System (FITS) file, use the
fitsinfo function. The fitsinfo function returns a structure containing the information about the
file and detailed information about the data in the file.

To import data into the MATLAB workspace from a Flexible Image Transport System (FITS) file, use
the fitsread function. Using this function, you can import the primary data in the file or you can
import the data in any of the extensions in the file, such as the Image extension, as shown in this
example.

1 Determine which extensions the FITS file contains, using the fitsinfo function.
info = fitsinfo('tst0012.fits')

info =

 Filename: 'matlabroot\tst0012.fits'
 FileModDate: '12-Mar-2001 19:37:46'
 FileSize: 109440
 Contents: {'Primary' 'Binary Table' 'Unknown' 'Image' 'ASCII Table'}
 PrimaryData: [1x1 struct]
 BinaryTable: [1x1 struct]
 Unknown: [1x1 struct]
 Image: [1x1 struct]
 AsciiTable: [1x1 struct]

The info structure shows that the file contains several extensions including the Binary Table,
ASCII Table, and Image extensions.

2 Read data from the file.

To read the Primary data in the file, specify the filename as the only argument:

pdata = fitsread('tst0012.fits');

To read any of the extensions in the file, you must specify the name of the extension as an
optional parameter. This example reads the Binary Table extension from the FITS file:

bindata = fitsread('tst0012.fits','binarytable');

7 Scientific Data

7-26

https://fits.gsfc.nasa.gov/

Importing HDF5 Files
In this section...
“Overview” on page 7-27
“Using the High-Level HDF5 Functions to Import Data” on page 7-27
“Using the Low-Level HDF5 Functions to Import Data” on page 7-32

Overview
Hierarchical Data Format, Version 5, (HDF5) is a general-purpose, machine-independent standard for
storing scientific data in files, developed by the National Center for Supercomputing Applications
(NCSA). HDF5 is used by a wide range of engineering and scientific fields that want a standard way
to store data so that it can be shared. For more information about the HDF5 file format, read the
HDF5 documentation available at the HDF Web site (https://www.hdfgroup.org).

MATLAB provides two methods to import data from an HDF5 file:

• High-level functions that make it easy to import data, when working with numeric datasets
• Low-level functions that enable more complete control over the importing process, by providing

access to the routines in the HDF5 C library

Note For information about importing to HDF4 files, which have a separate, incompatible format,
see “Import HDF4 Files Programmatically” on page 7-43.

Using the High-Level HDF5 Functions to Import Data
MATLAB includes several functions that you can use to examine the contents of an HDF5 file and
import data from the file into the MATLAB workspace.

Note You can only use the high-level functions to read numeric datasets or attributes. To read non-
numeric datasets or attributes, you must use the low-level interface on page 7-32.

• h5disp — View the contents of an HDF5 file
• h5info — Create a structure that contains all the metadata defining an HDF5 file
• h5read — Read data from a variable in an HDF5 file
• h5readatt — Read data from an attribute associated with a variable in an HDF5 file or with the
file itself (a global attribute).

For details about how to use these functions, see their reference pages, which include examples. The
following sections illustrate some common usage scenarios.

Determining the Contents of an HDF5 File

HDF5 files can contain data and metadata, called attributes. HDF5 files organize the data and
metadata in a hierarchical structure similar to the hierarchical structure of a UNIX file system.

In an HDF5 file, the directories in the hierarchy are called groups. A group can contain other groups,
data sets, attributes, links, and data types. A data set is a collection of data, such as a

 Importing HDF5 Files

7-27

https://www.hdfgroup.org

multidimensional numeric array or string. An attribute is any data that is associated with another
entity, such as a data set. A link is similar to a UNIX file system symbolic link. Links are a way to
reference objects without having to make a copy of the object.

Data types are a description of the data in the data set or attribute. Data types tell how to interpret
the data in the data set.

To get a quick view into the contents of an HDF5 file, use the h5disp function.

h5disp('example.h5')

HDF5 example.h5
Group '/'
 Attributes:
 'attr1': 97 98 99 100 101 102 103 104 105 0
 'attr2': 2x2 H5T_INTEGER
 Group '/g1'
 Group '/g1/g1.1'
 Dataset 'dset1.1.1'
 Size: 10x10
 MaxSize: 10x10
 Datatype: H5T_STD_I32BE (int32)
 ChunkSize: []
 Filters: none
 Attributes:
 'attr1': 49 115 116 32 97 116 116 114 105 ...
 'attr2': 50 110 100 32 97 116 116 114 105 ...
 Dataset 'dset1.1.2'
 Size: 20
 MaxSize: 20
 Datatype: H5T_STD_I32BE (int32)
 ChunkSize: []
 Filters: none
 Group '/g1/g1.2'
 Group '/g1/g1.2/g1.2.1'
 Link 'slink'
 Type: soft link
 Group '/g2'
 Dataset 'dset2.1'
 Size: 10
 MaxSize: 10
 Datatype: H5T_IEEE_F32BE (single)
 ChunkSize: []
 Filters: none
 Dataset 'dset2.2'
 Size: 5x3
 MaxSize: 5x3
 Datatype: H5T_IEEE_F32BE (single)
 ChunkSize: []
 Filters: none
 .
 .
 .

To explore the hierarchical organization of an HDF5 file, use the h5info function. h5info returns a
structure that contains various information about the HDF5 file, including the name of the file.

7 Scientific Data

7-28

info = h5info('example.h5')
info =

 Filename: 'matlabroot\matlab\toolbox\matlab\demos\example.h5'
 Name: '/'
 Groups: [4x1 struct]
 Datasets: []
 Datatypes: []
 Links: []
 Attributes: [2x1 struct]

By looking at the Groups and Attributes fields, you can see that the file contains four groups and
two attributes. The Datasets, Datatypes, and Links fields are all empty, indicating that the root
group does not contain any data sets, data types, or links. To explore the contents of the sample
HDF5 file further, examine one of the structures in Groups. The following example shows the
contents of the second structure in this field.

level2 = info.Groups(2)

level2 =

 Name: '/g2'
 Groups: []
 Datasets: [2x1 struct]
 Datatypes: []
 Links: []
 Attributes: []

In the sample file, the group named /g2 contains two data sets. The following figure illustrates this
part of the sample HDF5 file organization.

To get information about a data set, such as its name, dimensions, and data type, look at either of the
structures returned in the Datasets field.

dataset1 = level2.Datasets(1)

dataset1 =
 Filename: 'matlabroot\example.h5'
 Name: '/g2/dset2.1'
 Rank: 1
 Datatype: [1x1 struct]
 Dims: 10
 MaxDims: 10

 Importing HDF5 Files

7-29

 Layout: 'contiguous'
 Attributes: []
 Links: []
 Chunksize: []
 Fillvalue: []

Importing Data from an HDF5 File

To read data or metadata from an HDF5 file, use the h5read function. As arguments, specify the
name of the HDF5 file and the name of the data set. (To read the value of an attribute, you must use
h5readatt.)

To illustrate, this example reads the data set, /g2/dset2.1 from the HDF5 sample file example.h5.

data = h5read('example.h5','/g2/dset2.1')

data =

 1.0000
 1.1000
 1.2000
 1.3000
 1.4000
 1.5000
 1.6000
 1.7000
 1.8000
 1.9000

Mapping HDF5 Datatypes to MATLAB Datatypes

When the h5read function reads data from an HDF5 file into the MATLAB workspace, it maps HDF5
data types toMATLAB data types, as shown in the table below.

HDF5 Data Type h5read Returns
Bit-field Array of packed 8-bit integers
Float MATLAB single and double types, provided that they occupy 64

bits or fewer
Integer types, signed and unsigned Equivalent MATLAB integer types, signed and unsigned
Opaque Array of uint8 values
Reference Returns the actual data pointed to by the reference, not the

value of the reference.
Strings, fixed-length and variable
length

Cell array of character vectors

Enums Cell array of character vectors, where each enumerated value
is replaced by the corresponding member name

Compound 1-by-1 struct array; the dimensions of the dataset are
expressed in the fields of the structure.

Arrays Array of values using the same datatype as the HDF5 array.
For example, if the array is of signed 32-bit integers, the
MATLAB array will be of type int32.

7 Scientific Data

7-30

The example HDF5 file included with MATLAB includes examples of all these datatypes.

For example, the data set /g3/string is a string.

h5disp('example.h5','/g3/string')
HDF5 example.h5
Dataset 'string'
 Size: 2
 MaxSize: 2
 Datatype: H5T_STRING
 String Length: 3
 Padding: H5T_STR_NULLTERM
 Character Set: H5T_CSET_ASCII
 Character Type: H5T_C_S1
 ChunkSize: []
 Filters: none
 FillValue: ''

Now read the data from the file, MATLAB returns it as a cell array of character vectors.

s = h5read('example.h5','/g3/string')

s =

 'ab '
 'de '

>> whos s
 Name Size Bytes Class Attributes

 s 2x1 236 cell

The compound data types are always returned as a 1-by-1 struct. The dimensions of the data set are
expressed in the fields of the struct. For example, the data set /g3/compound2D is a compound
datatype.

h5disp('example.h5','/g3/compound2D')
HDF5 example.h5
Dataset 'compound2D'
 Size: 2x3
 MaxSize: 2x3
 Datatype: H5T_COMPOUND
 Member 'a': H5T_STD_I8LE (int8)
 Member 'b': H5T_IEEE_F64LE (double)
 ChunkSize: []
 Filters: none
 FillValue: H5T_COMPOUND

Now read the data from the file, MATLAB returns it as a 1-by-1 struct.

data = h5read('example.h5','/g3/compound2D')

data =

 a: [2x3 int8]
 b: [2x3 double]

 Importing HDF5 Files

7-31

Read an HDF5 Dataset with Dynamically Loaded Filters

In R2015a and later releases, MATLAB supports reading HDF5 datasets that are written using a
third-party filter. To read the datasets using the dynamically loaded filter feature, you must:

• Install the HDF5 filter plugin on your system as a shared library or a DLL.
• Set the HDF5_PLUGIN_PATH environment variable to point to the installation.

For more information see, HDF5 Dynamically Loaded Filters.

Note Writing HDF5 datasets using dynamically loaded filters is not supported.

Using the Low-Level HDF5 Functions to Import Data
MATLAB provides direct access to dozens of functions in the HDF5 library with low-level functions
that correspond to the functions in the HDF5 library. In this way, you can access the features of the
HDF5 library from MATLAB, such as reading and writing complex data types and using the HDF5
subsetting capabilities. For more information, see “Using the MATLAB Low-Level HDF5 Functions to
Export Data” on page 7-34.

7 Scientific Data

7-32

https://support.hdfgroup.org/HDF5/doc/Advanced/DynamicallyLoadedFilters/HDF5DynamicallyLoadedFilters.pdf

Exporting to HDF5 Files
In this section...
“Overview” on page 7-33
“Using the MATLAB High-Level HDF5 Functions to Export Data” on page 7-33
“Using the MATLAB Low-Level HDF5 Functions to Export Data” on page 7-34

Overview
Hierarchical Data Format, Version 5, (HDF5) is a general-purpose, machine-independent standard for
storing scientific data in files, developed by the National Center for Supercomputing Applications
(NCSA). HDF5 is used by a wide range of engineering and scientific fields that want a standard way
to store data so that it can be shared. For more information about the HDF5 file format, read the
HDF5 documentation available at the HDF Web site (https://www.hdfgroup.org).

MATLAB provides two methods to export data to an HDF5 file:

• High-level functions that simplify the process of exporting data, when working with numeric
datasets

• Low-level functions that provide a MATLAB interface to routines in the HDF5 C library

Note For information about exporting to HDF4 files, which have a separate and incompatible format,
see “Export to HDF4 Files” on page 7-51.

Using the MATLAB High-Level HDF5 Functions to Export Data
The easiest way to write data or metadata from the MATLAB workspace to an HDF5 file is to use
these MATLAB high-level functions.

Note You can use the high-level functions only with numeric data. To write nonnumeric data, you
must use the low-level interface on page 7-34.

• h5create — Create an HDF5 dataset
• h5write — Write data to an HDF5 dataset
• h5writeatt — Write data to an HDF5 attribute

For details about how to use these functions, see their reference pages, which include examples. The
following sections illustrate some common usage scenarios.

Writing a Numeric Array to an HDF5 Dataset

This example creates an array and then writes the array to an HDF5 file.

1 Create a MATLAB variable in the workspace. This example creates a 5-by-5 array of uint8
values.
testdata = uint8(magic(5))

 Exporting to HDF5 Files

7-33

https://www.hdfgroup.org

2 Create the HDF5 file and the dataset, using h5create.
h5create('my_example_file.h5', '/dataset1', size(testdata))

3 Write the data to the HDF5 file.
h5write('my_example_file.h5', '/dataset1', testdata)

Using the MATLAB Low-Level HDF5 Functions to Export Data
MATLAB provides direct access to dozens of functions in the HDF5 library with low-level functions
that correspond to the functions in the HDF5 library. In this way, you can access the features of the
HDF5 library from MATLAB, such as reading and writing complex data types and using the HDF5
subsetting capabilities.

The HDF5 library organizes the library functions into collections, called interfaces. For example, all
the routines related to working with files, such as opening and closing, are in the H5F interface,
where F stands for file. MATLAB organizes the low-level HDF5 functions into classes that correspond
to each HDF5 interface. For example, the MATLAB functions that correspond to the HDF5 file
interface (H5F) are in the @H5F class folder.

The following sections provide more detail about how to use the MATLAB HDF5 low-level functions.

• “Map HDF5 Function Syntax to MATLAB Function Syntax” on page 7-34
• “Map Between HDF5 Data Types and MATLAB Data Types” on page 7-36
• “Report Data Set Dimensions” on page 7-36
• “Write Data to HDF5 Data Set Using MATLAB Low-Level Functions” on page 7-37
• “Write a Large Data Set” on page 7-38
• “Preserve Correct Layout of Your Data” on page 7-39

Note This section does not describe all features of the HDF5 library or explain basic HDF5
programming concepts. To use the MATLAB HDF5 low-level functions effectively, refer to the official
HDF5 documentation available at https://www.hdfgroup.org.

Map HDF5 Function Syntax to MATLAB Function Syntax

In most cases, the syntax of the MATLAB low-level HDF5 functions matches the syntax of the
corresponding HDF5 library functions. For example, the following is the function signature of the
H5Fopen function in the HDF5 library. In the HDF5 function signatures, hid_t and herr_t are
HDF5 types that return numeric values that represent object identifiers or error status values.
hid_t H5Fopen(const char *name, unsigned flags, hid_t access_id) /* C syntax */

In MATLAB, each function in an HDF5 interface is a method of a MATLAB class. The following shows
the signature of the corresponding MATLAB function. First note that, because it's a method of a class,
you must use the dot notation to call the MATLAB function: H5F.open. This MATLAB function
accepts the same three arguments as the HDF5 function: a character vector containing the name, an
HDF5-defined constant for the flags argument, and an HDF5 property list ID. You use property lists to
specify characteristics of many different HDF5 objects. In this case, it's a file access property list.
Refer to the HDF5 documentation to see which constants can be used with a particular function and
note that, in MATLAB, constants are passed as character vectors.

file_id = H5F.open(name, flags, plist_id)

7 Scientific Data

7-34

https://www.hdfgroup.org

There are, however, some functions where the MATLAB function signature is different than the
corresponding HDF5 library function. The following describes some general differences that you
should keep in mind when using the MATLAB low-level HDF5 functions.

• HDF5 output parameters become MATLAB return values — Some HDF5 library functions
use function parameters to return data. Because MATLAB functions can return multiple values,
these output parameters become return values. To illustrate, the HDF5 H5Dread function returns
data in the buf parameter.

herr_t H5Dread(hid_t dataset_id,
 hid_t mem_type_id,
 hid_t mem_space_id,
 hid_t file_space_id,
 hid_t xfer_plist_id,
 void * buf) /* C syntax */

The corresponding MATLAB function changes the output parameter buf into a return value. Also,
in the MATLAB function, the nonzero or negative value herr_t return values become MATLAB
errors. Use MATLAB try-catch statements to handle errors.

buf = H5D.read(dataset_id,
 mem_type_id,
 mem_space_id,
 file_space_id,
 plist_id)

• String length parameters are unnecessary — The length parameter, used by some HDF5
library functions to specify the length of a string parameter, is not necessary in the corresponding
MATLAB function. For example, the H5Aget_name function in the HDF5 library includes a buffer
as an output parameter and the size of the buffer as an input parameter.

ssize_t H5Aget_name(hid_t attr_id,
 size_t buf_size,
 char *buf) /* C syntax */

The corresponding MATLAB function changes the output parameter buf into a return value and
drops the buf_size parameter.

buf = H5A.get_name(attr_id)

• Use an empty array to specify NULL — Wherever HDF5 library functions accept the value
NULL, the corresponding MATLAB function uses empty arrays ([]). For example, the H5Dfill
function in the HDF5 library accepts the value NULL in place of a specified fill value.

herr_t H5Dfill(const void *fill,
 hid_t fill_type_id, void *buf,
 hid_t buf_type_id,
 hid_t space_id) /* C syntax */

When using the corresponding MATLAB function, you can specify an empty array ([]) instead of
NULL.

• Use cell arrays to specify multiple constants — Some functions in the HDF5 library require
you to specify an array of constants. For example, in the H5Screate_simple function, to specify
that a dimension in the data space can be unlimited, you use the constant H5S_UNLIMITED for the
dimension in maxdims. In MATLAB, because you pass constants as character vectors, you must
use a cell array of character vectors to achieve the same result. The following code fragment
provides an example of using a cell array of character vectors to specify this constant for each
dimension of this data space.

ds_id = H5S.create_simple(2,[3 4],{'H5S_UNLIMITED' 'H5S_UNLIMITED'});

 Exporting to HDF5 Files

7-35

Map Between HDF5 Data Types and MATLAB Data Types

When the HDF5 low-level functions read data from an HDF5 file or write data to an HDF5 file, the
functions map HDF5 data types to MATLAB data types automatically.

For atomic data types, such as commonly used binary formats for numbers (integers and floating
point) and characters (ASCII), the mapping is typically straightforward because MATLAB supports
similar types. See the table Mapping Between HDF5 Atomic Data Types and MATLAB Data Types for
a list of these mappings.

Mapping Between HDF5 Atomic Data Types and MATLAB Data Types
HDF5 Atomic Data Type MATLAB Data Type
Bit-field Array of packed 8-bit integers
Float MATLAB single and double types, provided that they occupy 64 bits or

fewer
Integer types, signed and
unsigned

Equivalent MATLAB integer types, signed and unsigned

Opaque Array of uint8 values
Reference Array of uint8 values
String MATLAB character arrays

For composite data types, such as aggregations of one or more atomic data types into structures,
multidimensional arrays, and variable-length data types (one-dimensional arrays), the mapping is
sometimes ambiguous with reference to the HDF5 data type. In HDF5, a 5-by-5 data set containing a
single uint8 value in each element is distinct from a 1-by-1 data set containing a 5-by-5 array of
uint8 values. In the first case, the data set contains 25 observations of a single value. In the second
case, the data set contains a single observation with 25 values. In MATLAB both of these data sets are
represented by a 5-by-5 matrix.

If your data is a complex data set, you might need to create HDF5 data types directly to make sure
that you have the mapping you intend. See the table Mapping Between HDF5 Composite Data Types
and MATLAB Data Types for a list of the default mappings. You can specify the data type when you
write data to the file using the H5Dwrite function. See the HDF5 data type interface documentation
for more information.

Mapping Between HDF5 Composite Data Types and MATLAB Data Types
HDF5 Composite Data
Type

MATLAB Data Type

Array Extends the dimensionality of the data type which it contains. For
example, an array of integers in HDF5 would map onto a two
dimensional array of integers in MATLAB.

Compound MATLAB structure. Note: All structures representing HDF5 data in
MATLAB are scalar.

Enumeration Array of integers which each have an associated name
Variable Length MATLAB 1-D cell arrays

Report Data Set Dimensions

The MATLAB low-level HDF5 functions report data set dimensions and the shape of data sets
differently than the MATLAB high-level functions. For ease of use, the MATLAB high-level functions

7 Scientific Data

7-36

report data set dimensions consistent with MATLAB column-major indexing. To be consistent with the
HDF5 library, and to support the possibility of nested data sets and complicated data types, the
MATLAB low-level functions report array dimensions using the C row-major orientation.

Write Data to HDF5 Data Set Using MATLAB Low-Level Functions

This example shows how to use the MATLAB® HDF5 low-level functions to write a data set to an
HDF5 file and then read the data set from the file.

Create a 2-by-3 array of data to write to an HDF5 file.

testdata = [1 3 5; 2 4 6];

Create a new HDF5 file named my_file.h5 in the system temp folder. Use the MATLAB
H5F.create function to create a file. This MATLAB function corresponds to the HDF5 function,
H5Fcreate. As arguments, specify the name you want to assign to the file, the type of access you
want to the file ('H5F_ACC_TRUNC' in this case), and optional additional characteristics specified by
a file creation property list and a file access property list. In this case, use default values for these
property lists ('H5P_DEFAULT'). Pass C constants to the MATLAB function as character vectors.

filename = fullfile(tempdir,'my_file.h5');
fileID = H5F.create(filename,'H5F_ACC_TRUNC','H5P_DEFAULT','H5P_DEFAULT');

H5F.create returns a file identifier corresponding to the HDF5 file.

Create the data set in the file to hold the MATLAB variable. In the HDF5 programming model, you
must define the data type and dimensionality (data space) of the data set as separate entities. First,
use the H5T.copy function to specify the data type used by the data set, in this case, double. This
MATLAB function corresponds to the HDF5 function, H5Tcopy.

datatypeID = H5T.copy('H5T_NATIVE_DOUBLE');

H5T.copy returns a data type identifier.

Create a data space using H5S.create_simple, which corresponds to the HDF5 function,
H5Screate_simple. The first input, 2, is the rank of the data space. The second input is an array
specifying the size of each dimension of the dataset. Because HDF5 stores data in row-major order
and the MATLAB array is organized in column-major order, you should reverse the ordering of the
dimension extents before using H5Screate_simple to preserve the layout of the data. You can use
fliplr for this purpose.

dims = size(testdata);
dataspaceID = H5S.create_simple(2,fliplr(dims),[]);

H5S.create_simple returns a data space identifier, dataspaceID. Note that other software
programs that use row-major ordering (such as H5DUMP from the HDF Group) might report the size of
the dataset to be 3-by-2 instead of 2-by-3.

Create the data set using H5D.create, which corresponds to the HDF5 function, H5Dcreate.
Specify the file identifier, the name you want to assign to the data set, the data type identifier, the
data space identifier, and a data set creation property list identifier as arguments. 'H5P_DEFAULT'
specifies the default property list settings.

dsetname = 'my_dataset';
datasetID = H5D.create(fileID,dsetname,datatypeID,dataspaceID,'H5P_DEFAULT');

H5D.create returns a data set identifier, datasetID.

 Exporting to HDF5 Files

7-37

Write the data to the data set using H5D.write, which corresponds to the HDF5 function, H5Dwrite.
The input arguments are the data set identifier, the memory data type identifier, the memory space
identifier, the data space identifier, the transfer property list identifier and the name of the MATLAB
variable to write to the data set. The constant, 'H5ML_DEFAULT', specifies automatic mapping to
HDF5 data types. The constant, 'H5S_ALL', tells H5D.write to write all the data to the file.

H5D.write(datasetID,'H5ML_DEFAULT','H5S_ALL','H5S_ALL',...
 'H5P_DEFAULT',testdata);

Close the data set, data space, data type, and file objects. If used inside a MATLAB function, these
identifiers are closed automatically when they go out of scope.

H5D.close(datasetID);
H5S.close(dataspaceID);
H5T.close(datatypeID);
H5F.close(fileID);

Open the HDF5 file in order to read the data set you wrote. Use H5F.open to open the file for read-
only access. This MATLAB function corresponds to the HDF5 function, H5Fopen.

fileID = H5F.open(filename,'H5F_ACC_RDONLY','H5P_DEFAULT');

Open the data set to read using H5D.open, which corresponds to the HDF5 function, H5Dopen.
Specify as arguments the file identifier and the name of the data set, defined earlier in the example.

datasetID = H5D.open(fileID,dsetname);

Read the data into the MATLAB workspace using H5D.read, which corresponds to the HDF5
function, H5Dread. The input arguments are the data set identifier, the memory data type identifier,
the memory space identifier, the data space identifier, and the transfer property list identifier.

returned_data = H5D.read(datasetID,'H5ML_DEFAULT',...
 'H5S_ALL','H5S_ALL','H5P_DEFAULT');

Compare the original MATLAB variable, testdata, with the variable just created, returned_data.

isequal(testdata,returned_data)

ans = logical
 1

The two variables are the same.

Write a Large Data Set

To write a large data set, you must use the chunking capability of the HDF5 library. To do this, create
a property list and use the H5P.set_chunk function to set the chunk size in the property list.
Suppose the dimensions of your data set are [2^16 2^16] and the chunk size is 1024-by-1024. You
then pass the property list as the last argument to the data set creation function, H5D.create,
instead of using the H5P_DEFAULT value.
dims = [2^16 2^16];
plistID = H5P.create('H5P_DATASET_CREATE'); % create property list

chunk_size = min([1024 1024], dims); % define chunk size
H5P.set_chunk(plistID, fliplr(chunk_size)); % set chunk size in property list

datasetID = H5D.create(fileID, dsetname, datatypeID, dataspaceID, plistID);

7 Scientific Data

7-38

Preserve Correct Layout of Your Data

When you use any of the following functions that deal with dataspaces, you should flip dimension
extents to preserve the correct layout of the data.

• H5D.set_extent
• H5P.get_chunk
• H5P.set_chunk
• H5S.create_simple
• H5S.get_simple_extent_dims
• H5S.select_hyperslab
• H5T.array_create
• H5T.get_array_dims

 Exporting to HDF5 Files

7-39

Working with Non-ASCII Characters in HDF5 Files
To enable sharing of HDF5 files across multiple locales, MATLAB supports the use of non-ASCII
characters in HDF5 files. This example shows you how to:

• Create HDF5 files containing dataset and attribute names that have non-ASCII characters using
the high-level functions.

• Create variable-length string datasets containing non-ASCII characters using the low-level
functions.

Create Dataset and Attribute Names Containing Non-ASCII Characters
Create an HDF5 file containing a dataset name and an attribute name that contains non-ASCII
characters. To check if the dataset and attribute names appear as expected, write data to the dataset,
and display the file information.

Create a dataset with a name (/数据集) that includes non-ASCII characters.

dsetName = ['/' char([25968 25454 38598])];
dsetDims = [5 2];
h5create('outfile.h5',['/grp1' dsetName],dsetDims,...
 'TextEncoding','UTF-8');

Write data to the file.

dataToWrite = rand(dsetDims);
h5write('outfile.h5',['/grp1' dsetName],dataToWrite);

Create an attribute name (屬性名稱) that includes non-ASCII characters and assign a value to the
attribute.

attrName = char([25967 25453 38597]);
h5writeatt('outfile.h5','/',attrName,'I am an attribute',...
 'TextEncoding','UTF-8');

Display information about the file and check if the attribute name and dataset name appear correctly.

h5disp('outfile.h5')

HDF5 outfile.h5
Group '/'
 Attributes:
 '/屬性名稱': 'I am an attribute'
 Group '/grp1'
 Dataset '数据集'
 Size: 5x2
 MaxSize: 5x2
 Datatype: H5T_IEEE_F64LE (double)
 ChunkSize: []
 Filters: none
 FillValue: 0.000000

7 Scientific Data

7-40

Create Variable-Length String Data Containing Non-ASCII Characters
Create a variable-length string dataset to store data containing non-ASCII characters using the low-
level functions. Write the data to the dataset. Check if the data is written correctly.

Create data containing non-ASCII characters.

dataToWrite = {char([12487 12540 12479]) 'hello' ...
 char([1605 1585 1581 1576 1575]); ...
 'world' char([1052 1080 1088]) ...
 char([954 972 963 956 959 962])};
disp(dataToWrite)

 'データ' 'hello' 'مرحبا'
 'world' 'Мир' 'κόσμος'

To write this data into a file, create an HDF5 file, define a group name, and a dataset name within the
group.

Create the HDF5 file.

fileName = 'outfile.h5';
fileID = H5F.create(fileName,'H5F_ACC_TRUNC',...
 'H5P_DEFAULT', 'H5P_DEFAULT');

To create the group containing non-ASCII characters in its name, first, configure the link creation
property.

lcplID = H5P.create('H5P_LINK_CREATE');
H5P.set_char_encoding(lcplID,H5ML.get_constant_value('H5T_CSET_UTF8'));
plist = 'H5P_DEFAULT';

Then, create the group (グループ).

grpName = char([12464 12523 12540 12503]);
grpID = H5G.create(fileID,grpName,lcplID,plist,plist);

Create a dataset that contains variable-length string data with non-ASCII characters. First, configure
its data type.

typeID = H5T.copy('H5T_C_S1');
H5T.set_size(typeID,'H5T_VARIABLE');
H5T.set_cset(typeID,H5ML.get_constant_value('H5T_CSET_UTF8'));

Now create the dataset by specifying its name, data type, and dimensions.

dsetName = 'datasetUtf8';
dataDims = [2 3];
h5DataDims = fliplr(dataDims);
h5MaxDims = h5DataDims;
spaceID = H5S.create_simple(2,h5DataDims,h5MaxDims);
dsetID = H5D.create(grpID,dsetName,typeID,spaceID,...
 'H5P_DEFAULT','H5P_DEFAULT','H5P_DEFAULT');

Write the data to the dataset.

H5D.write(dsetID,'H5ML_DEFAULT','H5S_ALL',...
 'H5S_ALL','H5P_DEFAULT',dataToWrite);

 Working with Non-ASCII Characters in HDF5 Files

7-41

Read the data back.

dataRead = h5read('outfile.h5',['/' grpName '/' dsetName])

dataRead =

 2×3 cell array

 {'データ'} {'hello'} {'مرحبا' }
 {'world'} {'Мир' } {'κόσμος'}

Check if data in the file matches the written data.

isequal(dataRead,dataToWrite)

ans =

 logical

 1

Close ids.

H5D.close(dsetID);
H5S.close(spaceID);
H5T.close(typeID);
H5G.close(grpID);
H5P.close(lcplID);
H5F.close(fileID);

See Also
H5A.get_name | H5I.get_name | H5L.get_name_by_idx | H5L.get_val | H5R.get_name |
h5create | h5disp | h5info | h5writeatt

7 Scientific Data

7-42

Import HDF4 Files Programmatically
In this section...
“Overview” on page 7-43
“Using the MATLAB HDF4 High-Level Functions” on page 7-43

Overview
Hierarchical Data Format (HDF4) is a general-purpose, machine-independent standard for storing
scientific data in files, developed by the National Center for Supercomputing Applications (NCSA).
For more information about these file formats, read the HDF documentation at the HDF Web site
(www.hdfgroup.org).

HDF-EOS is an extension of HDF4 that was developed by the National Aeronautics and Space
Administration (NASA) for storage of data returned from the Earth Observing System (EOS). For
more information about this extension to HDF4, see the HDF-EOS documentation at the NASA Web
site (www.hdfeos.org).

MATLAB includes several options for importing HDF4 files, discussed in the following sections.

Note For information about importing HDF5 data, which is a separate, incompatible format, see
“Importing HDF5 Files” on page 7-27.

Using the MATLAB HDF4 High-Level Functions
To import data from an HDF or HDF-EOS file, you can use the MATLAB HDF4 high-level function
hdfread. The hdfread function provides a programmatic way to import data from an HDF4 or HDF-
EOS file that still hides many of the details that you need to know if you use the low-level HDF
functions, described in “Import HDF4 Files Using Low-Level Functions” on page 7-47.

This section describes these high-level MATLAB HDF functions, including

• “Using hdfinfo to Get Information About an HDF4 File” on page 7-43
• “Using hdfread to Import Data from an HDF4 File” on page 7-44

To export data to an HDF4 file, you must use the MATLAB HDF4 low-level functions.

Using hdfinfo to Get Information About an HDF4 File

To get information about the contents of an HDF4 file, use the hdfinfo function. The hdfinfo
function returns a structure that contains information about the file and the data in the file.

This example returns information about a sample HDF4 file included with MATLAB:

info = hdfinfo('example.hdf')

info =

 Filename: 'matlabroot\example.hdf'
 Attributes: [1x2 struct]
 Vgroup: [1x1 struct]

 Import HDF4 Files Programmatically

7-43

https://www.hdfgroup.org
https://www.hdfeos.org

 SDS: [1x1 struct]
 Vdata: [1x1 struct]

To get information about the data sets stored in the file, look at the SDS field.

Using hdfread to Import Data from an HDF4 File

To use the hdfread function, you must specify the data set that you want to read. You can specify the
filename and the data set name as arguments, or you can specify a structure returned by the
hdfinfo function that contains this information. The following example shows both methods. For
information about how to import a subset of the data in a data set, see “Reading a Subset of the Data
in a Data Set” on page 7-45.

1 Determine the names of data sets in the HDF4 file, using the hdfinfo function.

info = hdfinfo('example.hdf')

info =

 Filename: 'matlabroot\example.hdf'
 Attributes: [1x2 struct]
 Vgroup: [1x1 struct]
 SDS: [1x1 struct]
 Vdata: [1x1 struct]

To determine the names and other information about the data sets in the file, look at the contents
of the SDS field. The Name field in the SDS structure gives the name of the data set.

dsets = info.SDS

dsets =

 Filename: 'example.hdf'
 Type: 'Scientific Data Set'
 Name: 'Example SDS'
 Rank: 2
 DataType: 'int16'
 Attributes: []
 Dims: [2x1 struct]
 Label: {}
 Description: {}
 Index: 0

2 Read the data set from the HDF4 file, using the hdfread function. Specify the name of the data
set as a parameter to the function. Note that the data set name is case sensitive. This example
returns a 16-by-5 array:

dset = hdfread('example.hdf', 'Example SDS')

dset =

 3 4 5 6 7
 4 5 6 7 8
 5 6 7 8 9
 6 7 8 9 10
 7 8 9 10 11
 8 9 10 11 12
 9 10 11 12 13
 10 11 12 13 14

7 Scientific Data

7-44

 11 12 13 14 15
 12 13 14 15 16
 13 14 15 16 17
 14 15 16 17 18
 15 16 17 18 19
 16 17 18 19 20
 17 18 19 20 21
 18 19 20 21 22

Alternatively, you can specify the specific field in the structure returned by hdfinfo that
contains this information. For example, to read a scientific data set, use the SDS field.

dset = hdfread(info.SDS);

Reading a Subset of the Data in a Data Set

To read a subset of a data set, you can use the optional 'index' parameter. The value of the index
parameter is a cell array of three vectors that specify the location in the data set to start reading, the
skip interval (e.g., read every other data item), and the amount of data to read (e.g., the length along
each dimension). In HDF4 terminology, these parameters are called the start, stride, and edge values.

For example, this code

• Starts reading data at the third row, third column ([3 3]).
• Reads every element in the array ([]).
• Reads 10 rows and 2 columns ([10 2]).

subset = hdfread('Example.hdf','Example SDS',...
 'Index',{[3 3],[],[10 2]})

subset =

 7 8
 8 9
 9 10
 10 11
 11 12
 12 13
 13 14
 14 15
 15 16
 16 17

 Import HDF4 Files Programmatically

7-45

Map HDF4 to MATLAB Syntax
Each HDF4 API includes many individual routines that you use to read data from files, write data to
files, and perform other related functions. For example, the HDF4 Scientific Data (SD) API includes
separate C routines to open (SDopen), close (SDend), and read data (SDreaddata). For the SD API
and the HDF-EOS GD and SW APIs, MATLAB provides functions that map to individual C routines in
the HDF4 library. These functions are implemented in the matlab.io.hdf4.sd,
matlab.io.hdfeos.gd, and matlab.io.hdfeos.sw packages. For example, the SD API includes
the C routine SDendaccess to close an HDF4 data set:

status = SDendaccess(sds_id); /* C code */

To call this routine from MATLAB, use the MATLAB function, matlab.io.hdf4.sd.endAccess. The
syntax is similar:

sd.endAccess(sdsID)

For the remaining supported HDF4 APIs, MATLAB provides a single function that serves as a gateway
to all the routines in the particular HDF4 API. For example, the HDF Annotations (AN) API includes
the C routine ANend to terminate access to an AN interface:

status = ANend(an_id); /* C code */

To call this routine from MATLAB, use the MATLAB function associated with the AN API, hdfan. You
must specify the name of the routine, minus the API acronym, as the first argument and pass any
other required arguments to the routine in the order they are expected. For example,

status = hdfan('end',an_id);

Some HDF4 API routines use output arguments to return data. Because MATLAB does not support
output arguments, you must specify these arguments as return values.

For example, the ANget_tagref routine returns the tag and reference number of an annotation in
two output arguments, ann_tag and ann_ref. Here is the C code:

status = ANget_tagref(an_id,index,annot_type,ann_tag,ann_ref);

To call this routine from MATLAB, change the output arguments into return values:

[tag,ref,status] = hdfan('get_tagref',AN_id,index,annot_type);

Specify the return values in the same order as they appear as output arguments. The function status
return value is always specified as the last return value.

7 Scientific Data

7-46

Import HDF4 Files Using Low-Level Functions
This example shows how to read data from a Scientific Data Set in an HDF4 file, using the functions
in the matlat.io.hdf4.sd package. In HDF4 terminology, the numeric arrays stored in HDF4 files
are called data sets.

Add Package to Import List

Add the matlab.io.hdf4.* path to the import list.

import matlab.io.hdf4.*

Subsequent calls to functions in the matlat.io.hdf4.sd package need only be prefixed with sd,
rather than the entire package path.

Open HDF4 File

Open the example HDF4 file, sd.hdf, and specify read access, using the
matlab.io.hdf4.sd.start function. This function corresponds to the SD API routine, SDstart.

sdID = sd.start('sd.hdf','read');

sd.start returns an HDF4 SD file identifier, sdID.

Get Information About HDF4 File

Get the number of data sets and global attributes in the file, using the
matlab.io.hdf4.sd.fileInfo function. This function corresponds to the SD API routine,
SDfileinfo.

[ndatasets,ngatts] = sd.fileInfo(sdID)

ndatasets = 4

ngatts = 1

The file, sd.hdf, contains four data sets and one global attribute,

Get Attributes from HDF4 File

Get the contents of the first global attribute. HDF4 uses zero-based indexing, so an index value of 0
specifies the first index.

HDF4 files can optionally include information, called attributes, that describes the data that the file
contains. Attributes associated with an entire HDF4 file are global attributes. Attributes associated
with a data set are local attributes.

attr = sd.readAttr(sdID,0)

attr =
'02-Sep-2010 11:13:16'

Select Data Sets to Import

Determine the index number of the data set named temperature. Then, get the identifier of that
data set.

 Import HDF4 Files Using Low-Level Functions

7-47

idx = sd.nameToIndex(sdID,'temperature');
sdsID = sd.select(sdID,idx);

sd.select returns an HDF4 SD data set identifier, sdsID.

Get Information About Data Set

Get information about the data set identified by sdsID using the matlab.io.hdf4.sd.getInfo
function. This function corresponds to the SD API routine, SDgetinfo.

[name,dims,datatype,nattrs] = sd.getInfo(sdsID)

name =
'temperature'

dims = 1×2

 20 10

datatype =
'double'

nattrs = 11

sd.getInfo returns information about the name, size, data type, and number of attributes of the
data set.

Read Entire Data Set

Read the entire contents of the data set specified by the data set identifier, sdsID.

data = sd.readData(sdsID);

Read Portion of Data Set

Read a 2-by-4 portion of the data set, starting from the first column in the second row. Use the
matlab.io.hdf4.sd.readData function, which corresponds to the SD API routine, SDreaddata.
The start input is a vector of index values specifying the location in the data set where you want to
start reading data. The count input is a vector specifying the number of elements to read along each
data set dimension.

start = [0 1];
count = [2 4];
data2 = sd.readData(sdsID,start,count)

data2 = 2×4

 21 41 61 81
 22 42 62 82

Close HDF4 Data Set

Close access to the data set, using the matlab.io.hdf4.sd.endAccess function. This function
corresponds to the SD API routine, SDendaccess. You must close access to all the data sets in and
HDF4 file before closing the file.

sd.endAccess(sdsID)

7 Scientific Data

7-48

Close HDF4 File

Close the HDF4 file using the matlab.io.hdf4.sd.close function. This function corresponds to
the SD API routine, SDend.

sd.close(sdID)

See Also
sd.close | sd.endAccess | sd.fileInfo | sd.getInfo | sd.readData | sd.start

More About
• “Map HDF4 to MATLAB Syntax” on page 7-46

 Import HDF4 Files Using Low-Level Functions

7-49

About HDF4 and HDF-EOS
Hierarchical Data Format (HDF4) is a general-purpose, machine-independent standard for storing
scientific data in files, developed by the National Center for Supercomputing Applications (NCSA).
For more information about these file formats, read the HDF documentation at the HDF Web site
(www.hdfgroup.org).

HDF-EOS is an extension of HDF4 that was developed by the National Aeronautics and Space
Administration (NASA) for storage of data returned from the Earth Observing System (EOS). For
more information about this extension to HDF4, see the HDF-EOS documentation at the NASA Web
site (www.hdfeos.org).

HDF4 Application Programming Interfaces (APIs) are libraries of C routines. To import or export
data, you must use the functions in the HDF4 API associated with the particular HDF4 data type you
are working with. Each API has a particular programming model, that is, a prescribed way to use the
routines to write data sets to the file. MATLAB functions allow you to access specific HDF4 APIs.

To use the MATLAB HDF4 functions effectively, you must be familiar with the HDF library. For
detailed information about HDF4 features and routines, refer to the documentation at the HDF Web
site.

7 Scientific Data

7-50

https://www.hdfgroup.org
https://www.hdfeos.org

Export to HDF4 Files
In this section...
“Write MATLAB Data to HDF4 File” on page 7-51
“Manage HDF4 Identifiers” on page 7-52

Write MATLAB Data to HDF4 File
This example shows how to write MATLAB® arrays to a Scientific Data Set in an HDF4 file.

Add Package to Import List

Add the matlab.io.hdf4.* path to the import list.

import matlab.io.hdf4.*

Prefix subsequent calls to functions in the matlat.io.hdf4.sd package with sd, rather than the
entire package path.

Create HDF4 File

Create a new HDF4 file using the matlab.io.hdf4.sd.start function. This function corresponds
to the SD API routine, SDstart.

sdID = sd.start('mydata.hdf','create');

sd.start creates the file and returns a file identifier named sdID.

To open an existing file instead of creating a new one, call sd.start with 'write' access instead of
'create'.

Create HDF4 Data Set

Create a data set in the file for each MATLAB array you want to export. If you are writing to an
existing data set, you can skip ahead to the next step. In this example, create one data set for the
array of sample data, A, using the matlab.io.hdf4.sd.create function. This function corresponds
to the SD API routine, SDcreate. The ds_type argument is a character vector specifying the
MATLAB data type of the data set.

A = [1 2 3 4 5 ; 6 7 8 9 10 ; 11 12 13 14 15];
ds_name = 'A';
ds_type = 'double';
ds_dims = size(A);
sdsID = sd.create(sdID,ds_name,ds_type,ds_dims);

sd.create returns an HDF4 SD data set identifier, sdsID.

Write MATLAB Data to HDF4 File

Write data in A to the data set in the file using the matlab.io.hdf4.sd.writedata function. This
function corresponds to the SD API routine, SDwritedata. The start argument specifies the zero-
based starting index.

start = [0 0];
sd.writeData(sdsID,start,A);

 Export to HDF4 Files

7-51

sd.writeData queues the write operation. Queued operations execute when you close the HDF4
file.

Write MATLAB Data to Portion of Data Set

Replace the second row of the data set with the vector B. Use a start input value of [1 0] to begin
writing at the second row, first column. start uses zero-based indexing.

B = [9 9 9 9 9];
start = [1 0];
sd.writeData(sdsID,start,B);

Write Metadata to HDF4 File

Create a global attribute named creation_date, with a value that is the current date and time. Use
the matlab.io.hdf4.sd.setAttr function, which corresponds to the SD API routine, SDsetattr.

sd.setAttr(sdID,'creation_date',datestr(now));

sd.Attr creates a file attribute, also called a global attribute, associated with the HDF4 file
identified by sdID.

Associate a predefined attribute, cordsys, to the data set identified by sdsID. Possible values of this
attribute include the text strings 'cartesian', 'polar', and 'spherical'.

attr_name = 'cordsys';
attr_value = 'polar';
sd.setAttr(sdsID,attr_name,attr_value);

Close HDF4 Data Set

Close access to the data set, using the matlab.io.hdf4.sd.endAccess function. This function
corresponds to the SD API routine, SDendaccess. You must close access to all the data sets in and
HDF4 file before closing the file.

sd.endAccess(sdsID);

Close HDF4 File

Close the HDF4 file using the matlab.io.hdf4.sd.close function. This function corresponds to
the SD API routine, SDend.

sd.close(sdID);

Closing an HDF4 file executes all the write operations that have been queued using SDwritedata.

Manage HDF4 Identifiers
MATLAB supports utility functions that make it easier to use HDF4 in the MATLAB environment.

• “View All Open HDF4 Identifiers” on page 7-53
• “Close All Open HDF4 Identifiers” on page 7-53

7 Scientific Data

7-52

View All Open HDF4 Identifiers

Use the gateway function to the MATLAB HDF4 utility API, hdfml, and specify the name of the
listinfo routine as an argument to view all the currently open HDF4 identifiers. MATLAB updates
this list whenever HDF identifiers are created or closed. In this example only two identifiers are open.

hdfml('listinfo')

No open RI identifiers
No open GR identifiers
No open grid identifiers
No open grid file identifiers
No open annotation identifiers
No open AN identifiers
Open scientific dataset identifiers:
 262144
Open scientific data file identifiers:
 393216
No open Vdata identifiers
No open Vgroup identifiers
No open Vfile identifiers
No open point identifiers
No open point file identifiers
No open swath identifiers
No open swath file identifiers
No open access identifiers
No open file identifiers

Close All Open HDF4 Identifiers

Close all the currently open HDF4 identifiers in a single call using the gateway function to the
MATLAB HDF4 utility API, hdfml. Specify the name of the closeall routine as an argument:

hdfml('closeall')

See Also
hdfml | sd.close | sd.create | sd.endAccess | sd.setAttr | sd.start | sd.writeData

More About
• “Map HDF4 to MATLAB Syntax” on page 7-46

 Export to HDF4 Files

7-53

Audio and Video

• “Read and Write Audio Files” on page 8-2
• “Record and Play Audio” on page 8-4
• “Read Video Files” on page 8-8
• “Supported Video and Audio File Formats” on page 8-12
• “Convert Between Image Sequences and Video” on page 8-16

8

Read and Write Audio Files
Write data to an audio file, get information about the file, and then read the data back into the
MATLAB workspace.

Write to Audio File

Load sample data from the file, handel.mat

load handel.mat

The workspace now contains a matrix of audio data, y, and a sample rate, Fs.

Use the audiowrite function to write the data to a WAVE file named handel.wav in the current
folder.

audiowrite('handel.wav',y,Fs)
clear y Fs

The audiowrite function also can write to other audio file formats such as OGG, FLAC, and MPEG-4
AAC.

Get Information About Audio File

Use the audioinfo function to get information about the WAVE file, handel.wav.

info = audioinfo('handel.wav')

info =
 Filename: 'pwd\handel.wav'
 CompressionMethod: 'Uncompressed'
 NumChannels: 1
 SampleRate: 8192
 TotalSamples: 73113
 Duration: 8.9249
 Title: []
 Comment: []
 Artist: []
 BitsPerSample: 16

audioinfo returns a 1-by-1 structure array. The SampleRate field indicates the sample rate of the
audio data, in hertz. The Duration field indicates the duration of the file, in seconds.

Read Audio File

Use the audioread function to read the file, handel.wav. The audioread function can support
WAVE, OGG, FLAC, AU, MP3, and MPEG-4 AAC files.

[y,Fs] = audioread('handel.wav');

Play the audio.

sound(y,Fs)

You also can read WAV, AU, or SND files interactively. Select Import Data or double-click the file
name in the Current Folder browser.

8 Audio and Video

8-2

Plot Audio Data

Create a vector t the same length as y, that represents elapsed time.

t = 0:seconds(1/Fs):seconds(info.Duration);
t = t(1:end-1);

Plot the audio data as a function of time.

plot(t,y)
xlabel('Time')
ylabel('Audio Signal')

See Also
audioinfo | audioread | audiowrite

Related Examples
• “Import Images, Audio, and Video Interactively” on page 1-7

 Read and Write Audio Files

8-3

Record and Play Audio
Record and play audio data for processing in MATLAB from audio input and output devices on your
system.

In this section...
“Record Audio” on page 8-4
“Play Audio” on page 8-6
“Record or Play Audio within a Function” on page 8-6

Record Audio
Record data from an audio input device such as a microphone connected to your system:

1 Create an audiorecorder object.
2 Call the record or recordblocking method, where:

• record returns immediate control to the calling function or the command prompt even as
recording proceeds. Specify the length of the recording in seconds, or end the recording with
the stop method. Optionally, call the pause and resume methods. The recording is
performed asynchronously.

• recordblocking retains control until the recording is complete. Specify the length of the
recording in seconds. The recording is performed synchronously.

3 Create a numeric array corresponding to the signal data using the getaudiodata method.

The following examples show how to use the recordblocking and record methods.

Record Microphone Input

This example shows how to record microphone input, play back the recording, and store the recorded
audio signal in a numeric array. You must first connect a microphone to your system.

Create an audiorecorder object named recObj for recording audio input.

recObj = audiorecorder

recObj =

 audiorecorder with properties:

 SampleRate: 8000
 BitsPerSample: 8
 NumChannels: 1
 DeviceID: -1
 CurrentSample: 1
 TotalSamples: 0
 Running: 'off'
 StartFcn: []
 StopFcn: []
 TimerFcn: []
 TimerPeriod: 0.0500
 Tag: ''

8 Audio and Video

8-4

 UserData: []
 Type: 'audiorecorder'

audiorecorder creates an 8000 Hz, 8-bit, 1-channel audiorecorder object.

Record your voice for 5 seconds.

disp('Start speaking.')
recordblocking(recObj, 5);
disp('End of Recording.');

Play back the recording.

play(recObj);

Store data in double-precision array, y.

y = getaudiodata(recObj);

Plot the audio samples.

plot(y);

Record Two Channels from Different Sound Cards

To record audio independently from two different sound cards, with a microphone connected to each:

1 Call audiodevinfo to list the available sounds cards. For example, this code returns a structure
array containing all input and output audio devices on your system:

info = audiodevinfo;

Identify the sound cards you want to use by name, and note their ID values.
2 Create two audiorecorder objects. For example, this code creates the audiorecorder object,

recorder1, for recording a single channel from device 3 at 44.1 kHz and 16 bits per sample.
The audiorecorder object, recorder2, is for recording a single channel from device 4 at 48
kHz:

recorder1 = audiorecorder(44100,16,1,3);
recorder2 = audiorecorder(48000,16,1,4);

3 Record each audio channel separately.

record(recorder1);
record(recorder2);
pause(5);

The recordings occur simultaneously as the first call to record does not block.
4 Stop the recordings.

stop(recorder1);
stop(recorder2);

Specify the Quality of the Recording

By default, an audiorecorder object uses a sample rate of 8000 hertz, a depth of 8 bits (8 bits per
sample), and a single audio channel. These settings minimize the required amount of data storage.
For higher quality recordings, increase the sample rate or bit depth.

 Record and Play Audio

8-5

For example, typical compact disks use a sample rate of 44,100 hertz and a 16-bit depth. Create an
audiorecorder object to record in stereo (two channels) with those settings:

myRecObj = audiorecorder(44100, 16, 2);

For more information on the available properties and values, see the audiorecorder reference
page.

Play Audio
After you import or record audio, MATLAB supports several ways to listen to the data:

• For simple playback using a single function call, use sound or soundsc. For example, load a
sample MAT-file that contains signal and sample rate data, and listen to the audio:

load chirp.mat;
sound(y, Fs);

• For more flexibility during playback, including the ability to pause, resume, or define callbacks,
use the audioplayer function. Create an audioplayer object, then call methods to play the
audio. For example, listen to the gong sample file:

load gong.mat;
gong = audioplayer(y, Fs);
play(gong);

For an additional example, see “Record or Play Audio within a Function” on page 8-6.

If you do not specify the sample rate, sound plays back at 8192 hertz. For any playback, specify
smaller sample rates to play back more slowly, and larger sample rates to play back more quickly.

Note Most sound cards support sample rates between approximately 5,000 and 48,000 hertz.
Specifying sample rates outside this range can produce unexpected results.

Record or Play Audio within a Function
If you create an audioplayer or audiorecorder object inside a function, the object exists only for
the duration of the function. For example, create a player function called playFile and a simple
callback function showSeconds:

function playFile(myfile)
 load(myfile);

 obj = audioplayer(y, Fs);
 obj.TimerFcn = 'showSeconds';
 obj.TimerPeriod = 1;

 play(obj);
end

function showSeconds
 disp('tick')
end

Call playFile from the command prompt to play the file handel.mat:

8 Audio and Video

8-6

playFile('handel.mat')

At the recorded sample rate of 8192 samples per second, playing the 73113 samples in the file takes
approximately 8.9 seconds. However, the playFile function typically ends before playback
completes, and clears the audioplayer object obj.

To ensure complete playback or recording, consider the following options:

• Use playblocking or recordblocking instead of play or record. The blocking methods
retain control until playing or recording completes. If you block control, you cannot issue any
other commands or methods (such as pause or resume) during the playback or recording.

• Create an output argument for your function that generates an object in the base workspace. For
example, modify the playFile function to include an output argument:

function obj = playFile(myfile)

Call the function:

h = playFile('handel.mat');

Because h exists in the base workspace, you can pause playback from the command prompt:

pause(h)

See Also
audioplayer | audiorecorder | sound | soundsc

More About
• “Read and Write Audio Files” on page 8-2

 Record and Play Audio

8-7

Read Video Files
Read frames from a video starting at a specific time or frame index, read frames within a specified
interval, or read all the frames in the video.

Read Frames Beginning at Specified Time or Frame Index

Read part of a video file starting 0.5 second from the beginning of the file. Then, read the video
starting from frame index 100 to the end of the video file.

Construct a VideoReader object associated with the sample file 'xylophone.mp4'.

vidObj = VideoReader('xylophone.mp4');

Specify that reading should begin 0.5 second from the beginning of the file by setting the
CurrentTime property.

vidObj.CurrentTime = 0.5;

Read video frames until the end of the file is reached by using the readFrame method.

while hasFrame(vidObj)
 vidFrame = readFrame(vidObj);
 imshow(vidFrame)
 pause(1/vidObj.FrameRate);
end

Alternatively, you can read frames from a video starting at a specified frame index to the end of the
video by using the read method. Specify the indices to read as [100 Inf]. The read method
returns all the frames starting at 100 to the end of the video file.

vidframes = read(vidObj,[100 Inf]);

8 Audio and Video

8-8

Read Frames Within Specified Interval

Read a part of a video file by specifying the time or frame interval.

Read the video frames between 0.6 and 0.9 seconds. First, create a video reader object and a
structure array to hold the frames.

vidObj = VideoReader('xylophone.mp4');
s = struct('cdata',zeros(vidObj.Height,vidObj.Width,3,'uint8'),'colormap',[]);

Then, specify that reading should begin 0.6 second from the beginning of the file by setting the
CurrentTime property.

vidObj.CurrentTime = 0.6;

Read one frame at a time until CurrentTime reaches 0.9 second. Append data from each video
frame to the structure array. View the number of frames in the structure array. s is a 1-by-10
structure indicating that 10 frames were read. For information on displaying the frames in the
structure s as a movie, see the movie function reference page.

k = 1;
while vidObj.CurrentTime <= 0.9
 s(k).cdata = readFrame(vidObj);
 k = k+1;
end
whos s

 Name Size Bytes Class Attributes

 s 1x10 2305344 struct

Alternatively, you can read all the frames in a specified interval by using frame indices. For example,
specify the second argument of read as [18 27]. The read method returns a FrameSize-by-10
array indicating that 10 frames were read.

frames = read(vidObj,[18 27]);
whos frames

 Name Size Bytes Class Attributes

 frames 240x320x3x10 2304000 uint8

Read All Frames

Read all the frames from video, one frame at a time or all the frames at once.

Create a video reader object and display the total number of frames in the video.

vidObj = VideoReader('xylophone.mp4');
vidObj.NumFrames

ans = 141

Read all the frames, one frame at a time, by using the readFrame method, and display the frames.

while hasFrame(vidObj)
 frame = readFrame(vidObj);
 imshow(frame)

 Read Video Files

8-9

 pause(1/vidObj.FrameRate);
end

Alternatively, you can read all the video frames at once. The read method returns a FrameSize-
by-141 array of video frames.

allFrames = read(vidObj);
whos allFrames

 Name Size Bytes Class Attributes

 allFrames 240x320x3x141 32486400 uint8

Troubleshooting and Tips For Video Reading

• The hasFrame method might return logical 1 (true) when the value of the CurrentTime property
is equal to the value of the Duration property. This is due to a limitation in the underlying APIs
used.

• Seeking to the last frame in a video file by setting the CurrentTime property to a value close to
the Duration value is not recommended. For some files, this operation returns an error
indicating that the end-of-file has been reached, even though the CurrentTime value is less than
the Duration value. This typically occurs if the file duration is larger than the duration of the
video stream, and there is no video available to read near the end of the file.

• Use of the Duration property to limit the reading of data from a video file is not recommended.
Use the hasFrame method to check whether there is a frame available to read. It is best to read
data until the file reports that there are no more frames available to read.

• Video Reading Performance on Windows® Systems: To achieve better video reader performance
on Windows for MP4 and MOV files, MATLAB® uses the system’s graphics hardware for decoding.
However, in some cases using the graphics card for decoding can result in poorer performance
depending on the specific graphics hardware on the system. If you notice slower video reader
performance on your system, turn off the hardware acceleration by typing:

8 Audio and Video

8-10

matlab.video.read.UseHardwareAcceleration('off'). You can reenable hardware
acceleration by typing: matlab.video.read.UseHardwareAcceleration('on').

See Also
VideoReader | mmfileinfo | movie | read | readFrame

More About
• “Supported Video and Audio File Formats” on page 8-12

 Read Video Files

8-11

Supported Video and Audio File Formats
Video and audio files in MATLAB and their supported file formats and codecs.

Video Data in MATLAB
What Are Video Files?

For video data, the term “file format” often refers to either the container format or the codec. A
container format describes the layout of the file, while a codec describes how to encode/decode the
video data. Many container formats can hold data encoded with different codecs.

To read a video file, any application must:

• Recognize the container format (such as AVI).
• Have access to the codec that can decode the video data stored in the file. Some codecs are part

of standard Windows and Macintosh system installations, and allow you to play video in Windows
Media Player or QuickTime. In MATLAB, VideoReader can access most, but not all, of these
codecs.

• Properly use the codec to decode the video data in the file. VideoReader cannot always read files
associated with codecs that were not part of your original system installation.

Formats That VideoReader Supports

Use VideoReader to read video files in MATLAB. The file formats that VideoReader supports vary
by platform, and have no restrictions on file extensions.

Platforms File Formats
All Platforms AVI, including uncompressed, indexed, grayscale,

and Motion JPEG-encoded video (.avi)
Motion JPEG 2000 (.mj2)

All Windows MPEG-1 (.mpg)
Windows Media Video (.wmv, .asf, .asx)
Any format supported by Microsoft DirectShow

Windows 7 or later MPEG-4, including H.264 encoded video
(.mp4, .m4v)
Apple QuickTime Movie (.mov)
Any format supported by Microsoft Media
Foundation

8 Audio and Video

8-12

Platforms File Formats
Macintosh Most formats supported by QuickTime Player,

including:
MPEG-1 (.mpg)
MPEG-4, including H.264 encoded video
(.mp4, .m4v)
Apple QuickTime Movie (.mov)
3GPP
3GPP2
AVCHD
DV

Note: For OS X Yosemite (Version 10.10) and
later, MPEG-4/H.264 files written using
VideoWriter, play correctly, but display an
inexact frame rate.

Linux Any format supported by your installed plug-ins
for GStreamer 1.0 or higher, as listed on https://
gstreamer.freedesktop.org/documentation/
plugins_doc.html, including Ogg Theora (.ogg).

View Codec Associated with Video File

This example shows how to view the codec associated with a video file, using the mmfileinfo
function.

Store information about the sample video file, shuttle.avi, in a structure array named info. The
info structure contains the following fields: Filename, Path, Duration, Audio and Video.

info = mmfileinfo('shuttle.avi');

Show the properties in the command window by displaying the fields of the info structure. For
example, to view information under the Video field, type info.Video

info.Video

ans = struct with fields:
 Format: 'MJPG'
 Height: 288
 Width: 512

The file, shuttle.avi, uses the Motion JPEG codec.

Troubleshooting: Errors Reading Video File

You might be unable to read a video file if MATLAB cannot access the appropriate codec. 64-bit
applications use 64-bit codec libraries, while 32-bit applications use 32-bit codec libraries. For
example, when working with 64-bit MATLAB, you cannot read video files that require access to a 32-
bit codec installed on your system. To read these files, try one of the following:

• Install a 64-bit codec that supports this file format. Then, try reading the file using 64-bit
MATLAB.

 Supported Video and Audio File Formats

8-13

https://gstreamer.freedesktop.org/documentation/plugins_doc.html
https://gstreamer.freedesktop.org/documentation/plugins_doc.html
https://gstreamer.freedesktop.org/documentation/plugins_doc.html

• Re-encode the file into a different format with a 64-bit codec that is installed on your computer.

Sometimes, VideoReader cannot open a video file for reading on Windows platforms. This might
occur if you have installed a third-party codec that overrides your system settings. Uninstall the
codec and try opening the video file in MATLAB again.

Audio Data in MATLAB
What Are Audio Files?

The audio signal in a file represents a series of samples that capture the amplitude of the sound over
time. The sample rate is the number of discrete samples taken per second and given in hertz. The
precision of the samples, measured by the bit depth (number of bits per sample), depends on the
available audio hardware.

MATLAB audio functions read and store single-channel (mono) audio data in an m-by-1 column vector,
and stereo data in an m-by-2 matrix. In either case, m is the number of samples. For stereo data, the
first column contains the left channel, and the second column contains the right channel.

Typically, each sample is a double-precision value between -1 and 1. In some cases, particularly when
the audio hardware does not support high bit depths, audio files store the values as 8-bit or 16-bit
integers. The range of the sample values depends on the available number of bits. For example,
samples stored as uint8 values can range from 0 to 255 (28 – 1). The MATLAB sound and soundsc
functions support only single- or double-precision values between -1 and 1. Other audio functions
support multiple data types, as indicated on the function reference pages.

Formats That audioReader Supports

Use audioread to read audio files in MATLAB. The audioread function supports these file formats.

Platform Support File Format
All platforms WAVE (.wav)

OGG (.ogg)
FLAC (.flac)
AU (.au)
AIFF (.aiff, .aif)
AIFC (.aifc)

Windows 7 (or later), Macintosh, and Linux MP3 (.mp3)
MPEG-4 AAC (.m4a, .mp4)

On Windows platforms prior to Windows 7, audioread does not read WAVE files with MP3 encoded
data.

On Windows 7 (or later) platforms, audioread might also read any files supported by Windows
Media Foundation.

On Linux platforms, audioread might also read any files supported by GStreamer.

audioread can extract audio from MPEG-4 (.mp4, .m4v) video files on Windows 7 or later,
Macintosh, and Linux, and from Windows Media Video (.wmv) and AVI (.avi) files on Windows 7 (or
later) and Linux platforms.

8 Audio and Video

8-14

See Also
VideoReader | audioinfo | audioread | mmfileinfo

More About
• “Read Video Files” on page 8-8
• “Read and Write Audio Files” on page 8-2

 Supported Video and Audio File Formats

8-15

Convert Between Image Sequences and Video
Convert between video files and sequences of image files using VideoReader and VideoWriter.

The sample file named shuttle.avi contains 121 frames. Convert the frames to image files using
VideoReader and the imwrite function. Then, convert the image files to an AVI file using
VideoWriter.

Setup

Create a temporary working folder to store the image sequence.

workingDir = tempname;
mkdir(workingDir)
mkdir(workingDir,'images')

Create VideoReader

Create a VideoReader to use for reading frames from the file.

shuttleVideo = VideoReader('shuttle.avi');

Create the Image Sequence

Loop through the video, reading each frame into a width-by-height-by-3 array named img. Write out
each image to a JPEG file with a name in the form imgN.jpg, where N is the frame number.

| img001.jpg|

| img002.jpg|

| ...|

| img121.jpg|

ii = 1;

while hasFrame(shuttleVideo)
 img = readFrame(shuttleVideo);
 filename = [sprintf('%03d',ii) '.jpg'];
 fullname = fullfile(workingDir,'images',filename);
 imwrite(img,fullname) % Write out to a JPEG file (img1.jpg, img2.jpg, etc.)
 ii = ii+1;
end

Find Image File Names

Find all the JPEG file names in the images folder. Convert the set of image names to a cell array.

imageNames = dir(fullfile(workingDir,'images','*.jpg'));
imageNames = {imageNames.name}';

Create New Video with the Image Sequence

Construct a VideoWriter object, which creates a Motion-JPEG AVI file by default.

8 Audio and Video

8-16

outputVideo = VideoWriter(fullfile(workingDir,'shuttle_out.avi'));
outputVideo.FrameRate = shuttleVideo.FrameRate;
open(outputVideo)

Loop through the image sequence, load each image, and then write it to the video.

for ii = 1:length(imageNames)
 img = imread(fullfile(workingDir,'images',imageNames{ii}));
 writeVideo(outputVideo,img)
end

Finalize the video file.

close(outputVideo)

View the Final Video

Construct a reader object.

shuttleAvi = VideoReader(fullfile(workingDir,'shuttle_out.avi'));

Create a MATLAB movie struct from the video frames.

ii = 1;
while hasFrame(shuttleAvi)
 mov(ii) = im2frame(readFrame(shuttleAvi));
 ii = ii+1;
end

Resize the current figure and axes based on the video's width and height, and view the first frame of
the movie.

figure
imshow(mov(1).cdata, 'Border', 'tight')

Play back the movie once at the video's frame rate.

movie(mov,1,shuttleAvi.FrameRate)

 Convert Between Image Sequences and Video

8-17

Credits

Video of the Space Shuttle courtesy of NASA.

8 Audio and Video

8-18

XML Documents

• “Importing XML Documents” on page 9-2
• “Exporting to XML Documents” on page 9-5

9

Importing XML Documents
To read an XML file from your local disk or from a URL, use the xmlread function. xmlread returns
the contents of the file in a Document Object Model (DOM) node. For more information, see:

• “What Is an XML Document Object Model (DOM)?” on page 9-2
• “Example — Finding Text in an XML File” on page 9-3

What Is an XML Document Object Model (DOM)?
In a Document Object Model, every item in an XML file corresponds to a node. The properties and
methods for DOM nodes (that is, the way you create and access nodes) follow standards set by the
World Wide Web consortium.

For example, consider this sample XML file:

<productinfo>

<!-- This is a sample info.xml file. -->

<list>

<listitem>
<label color="blue">Import Wizard</label>
<callback>uiimport</callback>
<icon>ApplicationIcon.GENERIC_GUI</icon>
</listitem>

<listitem>
<label color="red">Profiler</label>
<callback>profile viewer</callback>
<icon>ApplicationIcon.PROFILER</icon>
</listitem>

</list>
</productinfo>

The information in the file maps to the following types of nodes in a DOM:

• Element nodes — Corresponds to tag names. In the sample info.xml file, these tags correspond
to element nodes:

• productinfo
• list
• listitem
• label
• callback
• icon

In this case, the list element is the parent of listitem element child nodes. The productinfo
element is the root element node.

• Text nodes — Contains values associated with element nodes. Every text node is the child of an
element node. For example, the Import Wizard text node is the child of the first label element
node.

9 XML Documents

9-2

• Attribute nodes — Contains name and value pairs associated with an element node. For example,
in the first label element node, color is the name of an attribute and blue is its value. Attribute
nodes are not parents or children of any nodes.

• Comment nodes — Includes additional text in the file, in the form <!--Sample comment-->.
• Document nodes — Corresponds to the entire file. Use methods on the document node to create

new element, text, attribute, or comment nodes.

For a complete list of the methods and properties of DOM nodes, see the org.w3c.dom package
description at https://docs.oracle.com/javase/7/docs/api.

Example — Finding Text in an XML File
The full matlabroot/toolbox/matlab/general/info.xml file contains several listitem
elements, such as:

<listitem>
<label>Import Wizard</label>
<callback>uiimport</callback>
<icon>ApplicationIcon.GENERIC_GUI</icon>
</listitem>

One of the label elements has the child text Plot Tools. Suppose that you want to find the text for
the callback element in the same listitem. Follow these steps:

1 Initialize your variables, and call xmlread to obtain the document node:

findLabel = 'Plot Tools';
findCbk = '';

xDoc = xmlread(fullfile(matlabroot, ...
 'toolbox','matlab','general','info.xml'));

2 Find all the listitem elements. The getElementsByTagName method returns a deep list that
contains information about the child nodes:

allListitems = xDoc.getElementsByTagName('listitem');

Note Lists returned by DOM methods use zero-based indexing.
3 For each listitem, compare the text for the label element to the text you want to find. When

you locate the correct label, get the callback text:

for k = 0:allListitems.getLength-1
 thisListitem = allListitems.item(k);

 % Get the label element. In this file, each
 % listitem contains only one label.
 thisList = thisListitem.getElementsByTagName('label');
 thisElement = thisList.item(0);

 % Check whether this is the label you want.
 % The text is in the first child node.
 if strcmp(thisElement.getFirstChild.getData, findLabel)
 thisList = thisListitem.getElementsByTagName('callback');
 thisElement = thisList.item(0);
 findCbk = char(thisElement.getFirstChild.getData);

 Importing XML Documents

9-3

https://docs.oracle.com/javase/7/docs/api/org/w3c/dom/package-summary.html

 break;
 end

end

4 Display the final results:

if ~isempty(findCbk)
 msg = sprintf('Item "%s" has a callback of "%s."',...
 findLabel, findCbk);
else
 msg = sprintf('Did not find the "%s" item.', findLabel);
end
disp(msg);

For an additional example that creates a structure array to store data from an XML file, see the
xmlread function reference page.

9 XML Documents

9-4

Exporting to XML Documents
To write data to an XML file, use the xmlwrite function. xmlwrite requires that you describe the
file in a Document Object Model (DOM) node. For an introduction to DOM nodes, see “What Is an
XML Document Object Model (DOM)?” on page 9-2

For more information, see:

• “Creating an XML File” on page 9-5
• “Updating an Existing XML File” on page 9-6

Creating an XML File
Although each file is different, these are common steps for creating an XML document:

1 Create a document node and define the root element by calling this method:

docNode = com.mathworks.xml.XMLUtils.createDocument('root_element');
2 Get the node corresponding to the root element by calling getDocumentElement. The root

element node is required for adding child nodes.
3 Add element, text, comment, and attribute nodes by calling methods on the document node.

Useful methods include:

• createElement
• createTextNode
• createComment
• setAttribute

For a complete list of the methods and properties of DOM nodes, see the org.w3c.dom package
description at https://docs.oracle.com/javase/7/docs/api.

4 As needed, define parent/child relationships by calling appendChild on the parent node.

Tip Text nodes are always children of element nodes. To add a text node, call createTextNode
on the document node, and then call appendChild on the parent element node.

Example — Creating an XML File with xmlwrite

Suppose that you want to create an info.xml file for the Upslope Area Toolbox (described in
“Display Custom Documentation”), as follows:
<?xml version="1.0" encoding="utf-8"?>
<toc version="2.0">
 <tocitem target="upslope_product_page.html">Upslope Area Toolbox<!-- Functions -->
 <tocitem target="demFlow_help.html">demFlow</tocitem>
 <tocitem target="facetFlow_help.html">facetFlow</tocitem>
 <tocitem target="flowMatrix_help.html">flowMatrix</tocitem>
 <tocitem target="pixelFlow_help.html">pixelFlow</tocitem>
 </tocitem>
</toc>

To create this file using xmlwrite, follow these steps:

1 Create the document node and root element, toc:

docNode = com.mathworks.xml.XMLUtils.createDocument('toc');

 Exporting to XML Documents

9-5

https://docs.oracle.com/javase/7/docs/api/org/w3c/dom/package-summary.html

2 Identify the root element, and set the version attribute:

toc = docNode.getDocumentElement;
toc.setAttribute('version','2.0');

3 Add the tocitem element node for the product page. Each tocitem element in this file has a
target attribute and a child text node:

product = docNode.createElement('tocitem');
product.setAttribute('target','upslope_product_page.html');
product.appendChild(docNode.createTextNode('Upslope Area Toolbox'));
toc.appendChild(product)

4 Add the comment:

product.appendChild(docNode.createComment(' Functions '));
5 Add a tocitem element node for each function, where the target is of the form

function_help.html:

functions = {'demFlow','facetFlow','flowMatrix','pixelFlow'};
for idx = 1:numel(functions)
 curr_node = docNode.createElement('tocitem');

 curr_file = [functions{idx} '_help.html'];
 curr_node.setAttribute('target',curr_file);

 % Child text is the function name.
 curr_node.appendChild(docNode.createTextNode(functions{idx}));
 product.appendChild(curr_node);
end

6 Export the DOM node to info.xml, and view the file with the type function:

xmlwrite('info.xml',docNode);
type('info.xml');

Updating an Existing XML File
To change data in an existing file, call xmlread to import the file into a DOM node. Traverse the node
and add or change data using methods defined by the World Wide Web consortium, such as:

• getElementsByTagName
• getFirstChild
• getNextSibling
• getNodeName
• getNodeType

When the DOM node contains all your changes, call xmlwrite to overwrite the file.

For a complete list of the methods and properties of DOM nodes, see the org.w3c.dom package
description at https://docs.oracle.com/javase/7/docs/api.

For examples that use these methods, see:

• “Example — Finding Text in an XML File” on page 9-3
• “Example — Creating an XML File with xmlwrite” on page 9-5
• xmlread and xmlwrite

9 XML Documents

9-6

https://docs.oracle.com/javase/7/docs/api/org/w3c/dom/package-summary.html

Memory-Mapping Data Files

• “Overview of Memory-Mapping” on page 10-2
• “Map File to Memory” on page 10-5
• “Read from Mapped File” on page 10-9
• “Write to Mapped File” on page 10-14
• “Delete Memory Map” on page 10-19
• “Share Memory Between Applications” on page 10-20

10

Overview of Memory-Mapping
In this section...
“What Is Memory-Mapping?” on page 10-2
“Benefits of Memory-Mapping” on page 10-2
“When to Use Memory-Mapping” on page 10-3
“Maximum Size of a Memory Map” on page 10-4
“Byte Ordering” on page 10-4

What Is Memory-Mapping?
Memory-mapping is a mechanism that maps a portion of a file, or an entire file, on disk to a range of
addresses within an application's address space. The application can then access files on disk in the
same way it accesses dynamic memory. This makes file reads and writes faster in comparison with
using functions such as fread and fwrite.

Benefits of Memory-Mapping
The principal benefits of memory-mapping are efficiency, faster file access, the ability to share
memory between applications, and more efficient coding.

Faster File Access

Accessing files via memory map is faster than using I/O functions such as fread and fwrite. Data
are read and written using the virtual memory capabilities that are built in to the operating system
rather than having to allocate, copy into, and then deallocate data buffers owned by the process.

MATLAB does not access data from the disk when the map is first constructed. It only reads or writes
the file on disk when a specified part of the memory map is accessed, and then it only reads that
specific part. This provides faster random access to the mapped data.

Efficiency

Mapping a file into memory allows access to data in the file as if that data had been read into an
array in the application's address space. Initially, MATLAB only allocates address space for the array;
it does not actually read data from the file until you access the mapped region. As a result, memory-
mapped files provide a mechanism by which applications can access data segments in an extremely
large file without having to read the entire file into memory first.

Efficient Coding Style

Memory-mapping in your MATLAB application enables you to access file data using standard
MATLAB indexing operations. Once you have mapped a file to memory, you can read the contents of
that file using the same type of MATLAB statements used to read variables from the MATLAB
workspace. The contents of the mapped file appear as if they were an array in the currently active
workspace. You simply index into this array to read or write the desired data from the file. Therefore,
you do not need explicit calls to the fread and fwrite functions.

In MATLAB, if x is a memory-mapped variable, and y is the data to be written to a file, then writing to
the file is as simple as

10 Memory-Mapping Data Files

10-2

x.Data = y;

Sharing Memory Between Applications

Memory-mapped files also provide a mechanism for sharing data between applications, as shown in
the figure below. This is achieved by having each application map sections of the same file. You can
use this feature to transfer large data sets between MATLAB and other applications.

Also, within a single application, you can map the same segment of a file more than once.

When to Use Memory-Mapping
Just how much advantage you get from mapping a file to memory depends mostly on the size and
format of the file, the way in which data in the file is used, and the computer platform you are using.

When Memory-Mapping Is Most Useful

Memory-mapping works best with binary files, and in the following scenarios:

• For large files that you want to access randomly one or more times
• For small files that you want to read into memory once and access frequently
• For data that you want to share between applications
• When you want to work with data in a file as if it were a MATLAB array

When the Advantage Is Less Significant

The following types of files do not fully use the benefits of memory-mapping:

 Overview of Memory-Mapping

10-3

• Formatted binary files like HDF or TIFF that require customized readers are not good for memory-
mapping. Describing the data contained in these files can be a very complex task. Also, you cannot
access data directly from the mapped segment, but must instead create arrays to hold the data.

• Text or ASCII files require that you convert the text in the mapped region to an appropriate type
for the data to be meaningful. This takes up additional address space.

• Files that are larger than several hundred megabytes in size consume a significant amount of the
virtual address space needed by MATLAB to process your program. Mapping files of this size may
result in MATLAB reporting out-of-memory errors more often. This is more likely if MATLAB has
been running for some time, or if the memory used by MATLAB becomes fragmented.

Maximum Size of a Memory Map
Due to limits set by the operating system and MATLAB, the maximum amount of data you can map
with a single instance of a memory map is 2 gigabytes on 32-bit systems, and 256 terabytes on 64-bit
systems. If you need to map more than this limit, you can either create separate maps for different
regions of the file, or you can move the window of one map to different locations in the file.

Byte Ordering
Memory-mapping works only with data that have the same byte ordering scheme as the native byte
ordering of your operating system. For example, because both Linus Torvalds' Linux and Microsoft
Windows systems use little-endian byte ordering, data created on a Linux system can be read on
Windows systems. You can use the computer function to determine the native byte ordering of your
current system.

10 Memory-Mapping Data Files

10-4

Map File to Memory
In this section...
“Create a Simple Memory Map” on page 10-5
“Specify Format of Your Mapped Data” on page 10-6
“Map Multiple Data Types and Arrays” on page 10-6
“Select File to Map” on page 10-8

Create a Simple Memory Map
Suppose you want to create a memory map for a file named records.dat, using the memmapfile
function.

Create a sample file named records.dat, containing 5000 values.

myData = gallery('uniformdata', [5000,1], 0);

fileID = fopen('records.dat','w');
fwrite(fileID, myData,'double');
fclose(fileID);

Next, create the memory map. Use the Format name-value pair argument to specify that the values
are of type double. Use the Writable name-value pair argument to allow write access to the
mapped region.

m = memmapfile('records.dat', ...
 'Format', 'double', ...
 'Writable', true)

m =

 Filename: 'd:\matlab\records.dat'
 Writable: true
 Offset: 0
 Format: 'double'
 Repeat: Inf
 Data: 5000x1 double array

MATLAB creates a memmapfile object, m. The Format property indicates that read and write
operations to the mapped region treat the data in the file as a sequence of double-precision numbers.
The Data property contains the 5000 values from the file, records.dat. You can change the value of
any of the properties, except for Data, after you create the memory map, m.

For example, change the starting position of the memory map, m. Begin the mapped region 1024
bytes from the start of the file by changing the value of the Offset property.

m.Offset = 1024

m =

 Filename: 'd:\matlab\records.dat'
 Writable: true
 Offset: 1024
 Format: 'double'

 Map File to Memory

10-5

 Repeat: Inf
 Data: 4872x1 double array

Whenever you change the value of a memory map property, MATLAB remaps the file to memory. The
Data property now contains only 4872 values.

Specify Format of Your Mapped Data
By default, MATLAB considers all the data in a mapped file to be a sequence of unsigned 8-bit
integers. However, your data might be of a different data type. When you call the memmapfile
function, use the Format name-value pair argument to indicate another data type. The value of
Format can either be a character vector that identifies a single class used throughout the mapped
region, or a cell array that specifies more than one class.

Suppose you map a file that is 12 kilobytes in length. Data read from this file can be treated as a
sequence of 6,000 16-bit (2-byte) integers, or as 1,500 8-byte double-precision floating-point
numbers, to name just a few possibilities. You also could read this data as a combination of different
types: for example, as 4,000 8-bit (1-byte) integers followed by 1,000 64-bit (8-byte) integers. You can
determine how MATLAB will interpret the mapped data by setting the Format property of the
memory map when you call the memmapfile function.

MATLAB arrays are stored on disk in column-major order. The sequence of array elements is column
1, row 1; column 1, row 2; column 1, last row; column 2, row 1, and so on. You might need to
transpose or rearrange the order of array elements when reading or writing via a memory map.

Map Multiple Data Types and Arrays
If the region you are mapping comprises segments of varying data types or array shapes, you can
specify an individual format for each segment. Specify the value of the Format name-value pair
argument as an n-by-3 cell array, where n is the number of segments. Each row in the cell array
corresponds to a segment. The first cell in the row identifies the data type to apply to the mapped
segment. The second cell contains the array dimensions to apply to the segment. The third cell
contains the field name for referencing that segment. For a memory map, m, use the following syntax:

m = memmapfile(filename, ...
 'Format', { ...
 datatype1, dimensions1, fieldname1; ...
 datatype2, dimensions2, fieldname2; ...
 : : : ...
 datatypeN, dimensionsN, fieldnameN})

Suppose you have a file that is 40,000 bytes in length. The following code maps the data beginning at
the 2048th byte. The Format value is a 3-by-3 cell array that maps the file data to three different
classes: int16, uint32, and single.

m = memmapfile('records.dat', ...
 'Offset', 2048, ...
 'Format', { ...
 'int16' [2 2] 'model'; ...
 'uint32' [1 1] 'serialno'; ...
 'single' [1 3] 'expenses'});

In this case, memmapfile maps the int16 data as a 2-by-2 matrix that you can access using the field
name, model. The uint32 data is a scalar value accessed using the field name, serialno. The

10 Memory-Mapping Data Files

10-6

single data is a 1-by-3 matrix named expenses. Each of these fields belongs to the 800-by-1
structure array, m.Data.

This figure shows the mapping of the example file.

The next figure shows the ordering of the array elements more closely. In particular, it illustrates that
MATLAB arrays are stored on the disk in column-major order. The sequence of array elements in the
mapped file is row 1, column 1; row 2, column 1; row 1, column 2; and row 2, column 2.

 Map File to Memory

10-7

If the data in your file is not stored in this order, you might need to transpose or rearrange the order
of array elements when reading or writing via a memory map.

Select File to Map
You can change the value of the Filename property at any time after constructing the memmapfile
object. You might want to do this if:

• You want to use the same memmapfile object on more than one file.
• You save your memmapfile object to a MAT-file, and then later load it back into MATLAB in an

environment where the mapped file has been moved to a different location. This requires that you
modify the path segment of the Filename to represent the new location.

Update the path in the Filename property for a memory map using dot notation. For example, to
specify a new path, f:\testfiles\records.dat for a memory map, m, type:

m.Filename = 'f:\testfiles\records.dat'

See Also
memmapfile

More About
• “Read from Mapped File” on page 10-9
• “Write to Mapped File” on page 10-14

10 Memory-Mapping Data Files

10-8

Read from Mapped File
This example shows how to create two different memory maps, and then read from each of the maps
using the appropriate syntax. Then, it shows how to modify map properties and analyze your data.

You can read the contents of a file that you mapped to memory using the same MATLAB® commands
you use to read variables from the MATLAB workspace. By accessing the Data property of the
memory map, the contents of the mapped file appear as an array in the currently active workspace.
To read the data you want from the file, simply index into the array. For better performance, copy the
Data field to a variable, and then read the mapped file using this variable:

dataRef = m.Data;

for k = 1 : N

y(k) = dataRef(k);

end

By contrast, reading directly from the memmapfile object is slower:

for k = 1 : N

y(k) = m.Data(k);

end

Read from Memory Map as Numeric Array

First, create a sample data file named records.dat that contains a 5000-by-1 matrix of double-
precision floating-point numbers.

randData = gallery('uniformdata',[5000,1],0);

fileID = fopen('records.dat','w');
fwrite(fileID,randData,'double');
fclose(fileID);

Map 100 double-precision floating-point numbers from the file to memory, and then read a portion of
the mapped data. Create the memory map, m. Specify an Offset value of 1024 to begin the map
1024 bytes from the start of the file. Specify a Repeat value of 100 to map 100 values.

m = memmapfile('records.dat','Format','double', ...
 'Offset',1024,'Repeat',100);

Copy the Data property to a variable, d. Then, show the format of d.

d = m.Data;

whos d

 Name Size Bytes Class Attributes

 d 100x1 800 double

The mapped data is an 800-byte array because there are 100 double values, each requiring 8 bytes.

 Read from Mapped File

10-9

Read a selected set of numbers from the file by indexing into the vector, d.

d(15:20)

ans = 6×1

 0.8392
 0.6288
 0.1338
 0.2071
 0.6072
 0.6299

Read from Memory Map as Nonscalar Structure

Map portions of data in the file, records.dat, as a sequence of multiple data types.

Call the memmapfile function to create a memory map, m.

 m = memmapfile('records.dat', ...
 'Format', { ...
 'uint16' [5 8] 'x'; ...
 'double' [4 5] 'y' });

The Format parameter tells memmapfile to treat the first 80 bytes of the file as a 5-by-8 matrix of
uint16 values, and the 160 bytes after that as a 4-by-5 matrix of double values. This pattern repeats
until the end of the file is reached.

Copy the Data property to a variable, d.

d = m.Data

d=166×1 struct array with fields:
 x
 y

d is a 166-element structure array with two fields. d is a nonscalar structure array because the file is
mapped as a repeating sequence of multiple data types.

Examine one structure in the array to show the format of each field.

d(3)

ans = struct with fields:
 x: [5x8 uint16]
 y: [4x5 double]

Read the x field of that structure from the file.

d(3).x

ans = 5x8 uint16 matrix

 19972 47529 19145 16356 46507 47978 35550 16341
 60686 51944 16362 58647 35418 58072 16338 62509
 51075 16364 54226 34395 8341 16341 33787 57669

10 Memory-Mapping Data Files

10-10

 16351 35598 6686 11480 16357 28709 36239 5932
 44292 15577 41755 16362 30311 31712 54813 16353

MATLAB formats the block of data as a 5-by-8 matrix of uint16 values, as specified by the Format
property.

Read the y field of that structure from the file.

d(3).y

ans = 4×5

 0.7271 0.3704 0.6946 0.5226 0.2714
 0.3093 0.7027 0.6213 0.8801 0.2523
 0.8385 0.5466 0.7948 0.1730 0.8757
 0.5681 0.4449 0.9568 0.9797 0.7373

MATLAB formats the block of data as a 4-by-5 matrix of double values.

Modify Map Properties and Analyze Data

This part of the example shows how to plot the Fourier transform of data read from a file via a
memory map. It then modifies several properties of the existing map, reads from a different part of
the data file, and plots a histogram from that data.

Create a sample file named double.dat.

randData = gallery('uniformdata',[5000,1],0);
fileID = fopen('double.dat','w');
fwrite(fileID,randData,'double');
fclose(fileID);

Create a memmapfile object of 1,000 elements of type double, starting at the 1025th byte.

m = memmapfile('double.dat','Offset',1024, ...
 'Format','double','Repeat',1000);

Copy the Data property to a variable, k. Then, get data associated with the map and plot the FFT of
the first 100 values of the map.

k = m.Data;
plot(abs(fft(k(1:100))))

 Read from Mapped File

10-11

This is the first time that data is referenced and is when the actual mapping of the file to the MATLAB
address space takes place.

Change the map properties, but continue using the same file. Whenever you change the value of a
memory map property, MATLAB remaps the file to memory.

m.Offset = 4096;
m.Format = 'single';
m.Repeat = 800;

m is now a memmapfile object of 800 elements of type single. The map now begins at the 4096th
byte in the file, records.dat.

Read from the portion of the file that begins at the 4096th byte, and calculate the maximum value of
the data. This command maps a new region and unmaps the previous region.

X = max(m.Data)

X = single
 7.5449e+37

See Also
memmapfile

10 Memory-Mapping Data Files

10-12

More About
• “Map File to Memory” on page 10-5
• “Write to Mapped File” on page 10-14

 Read from Mapped File

10-13

Write to Mapped File
This example shows how to create three different memory maps, and then write to each of the maps
using the appropriate syntax. Then, it shows how to work with copies of your mapped data.

You can write to a file using the same MATLAB commands you use to access variables in the MATLAB
workspace. By accessing the Data property of the memory map, the contents of the mapped file
appear as an array in the currently active workspace. Simply index into this array to write data to the
file. The syntax to use when writing to mapped memory depends on the format of the Data property
of the memory map.

In this section...
“Write to Memory Mapped as Numeric Array” on page 10-14
“Write to Memory Mapped as Scalar Structure” on page 10-15
“Write to Memory Mapped as Nonscalar Structure” on page 10-15
“Syntaxes for Writing to Mapped File” on page 10-16
“Work with Copies of Your Mapped Data” on page 10-17

Write to Memory Mapped as Numeric Array
First, create a sample file named records.dat, in your current folder.

myData = gallery('uniformdata', [5000,1], 0);

fileID = fopen('records.dat','w');
fwrite(fileID, myData,'double');
fclose(fileID);

Map the file as a sequence of 16-bit-unsigned integers. Use the Format name-value pair argument to
specify that the values are of type uint16.

m = memmapfile('records.dat', ...
 'Offset',20, ...
 'Format','uint16', ...
 'Repeat',15);

Because the file is mapped as a sequence of a single class (uint16), Data is a numeric array.

Ensure that you have write permission to the mapped file. Set the Writable property of the memory
map, m, to true.

m.Writable = true;

Create a matrix X that is the same size as the Data property, and write it to the mapped part of the
file. All of the usual MATLAB indexing and class rules apply when assigning values to data via a
memory map. The class that you assign to must be big enough to hold the value being assigned.

X = uint16(1:1:15);
m.Data = X;

X is a 1-by-15 vector of integer values ranging from 1 to 15.

10 Memory-Mapping Data Files

10-14

Verify that new values were written to the file. Specify an Offset value of 0 to begin reading from
the beginning of the file. Specify a Repeat value of 35 to view a total of 35 values. Use the reshape
function to display the values as a 7-by-5 matrix.

m.Offset = 0;
m.Repeat = 35;
reshape(m.Data,5,7)'

ans = 7x5 uint16 matrix

 47662 34773 26485 16366 58664
 25170 38386 16333 14934 9028
 1 2 3 4 5
 6 7 8 9 10
 11 12 13 14 15
 10085 14020 16349 37120 31342
 62110 16274 9357 44395 18679

The values in X have been written to the file, records.dat .

Write to Memory Mapped as Scalar Structure
Map a region of the file, records.dat, as a 300-by-8 matrix of type uint16 that can be referenced
by the field name, x, followed by a 200-by-5 matrix of type double that can be reference by the field
name, y. Specify write permission to the mapped file using the Writable name-value pair argument.

m = memmapfile('records.dat', ...
 'Format', { ...
 'uint16' [300 8] 'x'; ...
 'double' [200 5] 'y' }, ...
 'Repeat', 1, 'Writable', true);

View the Data property

m.Data

ans = struct with fields:
 x: [300x8 uint16]
 y: [200x5 double]

Data is a scalar structure array. This is because the file, records.dat, is mapped as containing
multiple data types that do not repeat.

Replace the matrix in the field, x, with a matrix of all ones.

 m.Data.x = ones(300,8,'uint16');

Write to Memory Mapped as Nonscalar Structure
Map the file, records.dat, as a 25-by-8 matrix of type uint16 followed by a 15-by-5 matrix of type
double. Repeat the pattern 20 times.

 m = memmapfile('records.dat', ...
 'Format', { ...

 Write to Mapped File

10-15

 'uint16' [5 4] 'x'; ...
 'double' [15 5] 'y' }, ...
 'Repeat', 20, 'Writable', true);

View the Data property

m.Data

ans=20×1 struct array with fields:
 x
 y

Data is a nonscalar structure array, because the file is mapped as a repeating sequence of multiple
data types.

Write an array of all ones to the field named x in the 12th element of Data.

 m.Data(12).x = ones(5,4,'uint16');

For the 12th element of Data, write the value, 50, to all elements in rows 3 to 5 of the field, x.

 m.Data(12).x(3:5,1:end) = 50;

View the field, x, of the 12th element of Data.

 m.Data(12).x

ans = 5x4 uint16 matrix

 1 1 1 1
 1 1 1 1
 50 50 50 50
 50 50 50 50
 50 50 50 50

Syntaxes for Writing to Mapped File
The syntax to use when writing to mapped memory depends on the format of the Data property of
the memory map. View the properties of the memory map by typing the name of the memmapfile
object.

This table shows the syntaxes for writing a matrix, X, to a memory map, m.

Format of the Data Property Syntax for Writing to Mapped File
Numeric array

Example: 15x1 uint16 array

m.Data = X;

Scalar (1-by-1) structure array

Example:

1x1 struct array with fields:
 x
 y

m.Data.fieldname = X;

fieldname is the name of a field.

10 Memory-Mapping Data Files

10-16

Format of the Data Property Syntax for Writing to Mapped File
Nonscalar (n-by-1) structure array

Example:

20x1 struct array with fields:
 x
 y

m.Data(k).fieldname = X;

k is a scalar index and fieldname is the name of a field.

The class of X and the number of elements in X must match those of the Data property or the field of
the Data property being accessed. You cannot change the dimensions of the Data property after you
have created the memory map using the memmapfile function. For example, you cannot diminish or
expand the size of an array by removing or adding a row from the mapped array, m.Data.

If you map an entire file and then append to that file after constructing the map, the appended data is
not included in the mapped region. If you need to modify the dimensions of data that you have
mapped to a memory map, m, you must either modify the Format or Repeat properties for m, or
recreate m using the memmapfile function.

Note To successfully modify a mapped file, you must have write permission for that file. If you do not
have write permission, attempting to write to the file generates an error, even if the Writable
property is true.

Work with Copies of Your Mapped Data
This part of the example shows how to work with copies of your mapped data. The data in variable d
is a copy of the file data mapped by m.Data(2). Because it is a copy, modifying array data in d does
not modify the data contained in the file.

Create a sample file named double.dat.

myData = gallery('uniformdata',[5000,1],0) * 100;
fileID = fopen('double.dat','w');
fwrite(fileID,myData,'double');
fclose(fileID);

Map the file as a series of double matrices.

m = memmapfile('double.dat', ...
 'Format', { ...
 'double' [5 5] 'x'; ...
 'double' [4 5] 'y' });

View the values in m.Data(2).x.

m.Data(2).x

ans = 5×5

 50.2813 19.3431 69.7898 49.6552 66.0228
 70.9471 68.2223 37.8373 89.9769 34.1971
 42.8892 30.2764 86.0012 82.1629 28.9726
 30.4617 54.1674 85.3655 64.4910 34.1194
 18.9654 15.0873 59.3563 81.7974 53.4079

 Write to Mapped File

10-17

Copy the contents of m.Data to the variable, d.

d = m.Data;

Write all zeros to the field named x in the copy.

d(2).x(1:5,1:5) = 0;

Verify that zeros are written to d(2).x

d(2).x

ans = 5×5

 0 0 0 0 0
 0 0 0 0 0
 0 0 0 0 0
 0 0 0 0 0
 0 0 0 0 0

Verify that the data in the mapped file is not changed.

m.Data(2).x

ans = 5×5

 50.2813 19.3431 69.7898 49.6552 66.0228
 70.9471 68.2223 37.8373 89.9769 34.1971
 42.8892 30.2764 86.0012 82.1629 28.9726
 30.4617 54.1674 85.3655 64.4910 34.1194
 18.9654 15.0873 59.3563 81.7974 53.4079

See Also
memmapfile

More About
• “Map File to Memory” on page 10-5
• “Read from Mapped File” on page 10-9

10 Memory-Mapping Data Files

10-18

Delete Memory Map
In this section...
“Ways to Delete a Memory Map” on page 10-19
“The Effect of Shared Data Copies On Performance” on page 10-19

Ways to Delete a Memory Map
To clear a memmapfile object from memory, do any of the following:

• Reassign another value to the memmapfile object's variable
• Clear the memmapfile object's variable from memory
• Exit the function scope in which the memmapfile object was created

The Effect of Shared Data Copies On Performance
When you assign the Data field of the memmapfile object to a variable, MATLAB makes a shared
data copy of the mapped data. This is very efficient because no memory actually gets copied. In the
following statement, d is a shared data copy of the data mapped from the file:

d = m.Data;

When you finish using the mapped data, make sure to clear any variables that share data with the
mapped file before clearing the memmapfile object itself. If you clear the object first, then the
sharing of data between the file and dependent variables is broken, and the data assigned to such
variables must be copied into memory before the object is cleared. If access to the mapped file was
over a network, then copying this data to local memory can take considerable time. Therefore, if you
assign m.Data to the variable, d, you should be sure to clear d before clearing m when you are
finished with the memory map.

 Delete Memory Map

10-19

Share Memory Between Applications
This example shows how to implement two separate MATLAB processes that communicate with each
other by writing and reading from a shared file. They share the file by mapping part of their memory
space to a common location in the file. A write operation to the memory map belonging to the first
process can be read from the map belonging to the second, and vice versa.

One MATLAB process (running send.m) writes a message to the file via its memory map. It also
writes the length of the message to byte 1 in the file, which serves as a means of notifying the other
process that a message is available. The second process (running answer.m) monitors byte 1 and,
upon seeing it set, displays the received message, puts it into uppercase, and echoes the message
back to the sender.

Prior to running the example, copy the send and answer functions to files send.m and answer.m in
your current working directory.

The send Function

This function prompts you to enter text and then, using memory-mapping, passes the text to another
instance of MATLAB that is running the answer function.

function send
% Interactively send a message to ANSWER using memmapfile class.

filename = fullfile(tempdir, 'talk_answer.dat');

% Create the communications file if it is not already there.
if ~exist(filename, 'file')
 [f, msg] = fopen(filename, 'wb');
 if f ~= -1
 fwrite(f, zeros(1,256), 'uint8');
 fclose(f);
 else
 error('MATLAB:demo:send:cannotOpenFile', ...
 'Cannot open file "%s": %s.', filename, msg);
 end
end

% Memory map the file.
m = memmapfile(filename, 'Writable', true, 'Format', 'uint8');

while true
 % Set first byte to zero, indicating a message is not
 % yet ready.
 m.Data(1) = 0;

 str = input('Enter text (or RETURN to end): ', 's');

 len = length(str);
 if (len == 0)
 disp('Terminating SEND function.')
 break;
 end

 % Warn if the message is longer than 255 characters.
 if len > 255

10 Memory-Mapping Data Files

10-20

 warning('ml:ml','SEND input will be truncated to 255 characters.');
 end
 str = str(1:min(len,255)); % Limit message to 255 characters.
 len = length(str); % Update len if str has been truncated.

 % Update the file via the memory map.
 m.Data(2:len+1) = str;
 m.Data(1)=len;

 % Wait until the first byte is set back to zero,
 % indicating that a response is available.
 while (m.Data(1) ~= 0)
 pause(.25);
 end

 % Display the response.
 disp('response from ANSWER is:')
 disp(char(m.Data(2:len+1))')

end

The answer Function

The answer function starts a server that, using memory-mapping, watches for a message from send.
When the message is received, answer replaces the message with an uppercase version of it, and
sends this new message back to send. To use answer, call it with no inputs.

function answer
% Respond to SEND using memmapfile class.

disp('ANSWER server is awaiting message');

filename = fullfile(tempdir, 'talk_answer.dat');

% Create the communications file if it is not already there.
if ~exist(filename, 'file')
 [f, msg] = fopen(filename, 'wb');
 if f ~= -1
 fwrite(f, zeros(1,256), 'uint8');
 fclose(f);
 else
 error('MATLAB:demo:answer:cannotOpenFile', ...
 'Cannot open file "%s": %s.', filename, msg);
 end
end

% Memory map the file.
m = memmapfile(filename, 'Writable', true, 'Format', 'uint8');

while true
 % Wait until the first byte is not zero.
 while m.Data(1) == 0
 pause(.25);
 end

 % The first byte now contains the length of the message.
 % Get it from m.

 Share Memory Between Applications

10-21

 msg = char(m.Data(2:1+double(m.Data(1))))';

 % Display the message.
 disp('Received message from SEND:')
 disp(msg)

 % Transform the message to all uppercase.
 m.Data(2:1+double(m.Data(1))) = upper(msg);

 % Signal to SEND that the response is ready.
 m.Data(1) = 0;
end

Running the Example

To see what the example looks like when it is run, first, start two separate MATLAB sessions on the
same computer system. Call the send function with no inputs in one MATLAB session. Call the
answer function in the other session, to create a map in each of the processes' memory to the
common file.

Run send in the first MATLAB session.

send

Enter text (or RETURN to end):

Run answer in the second MATLAB session.

answer

ANSWER server is awaiting message

Next, enter a message at the prompt displayed by the send function. MATLAB writes the message to
the shared file. The second MATLAB session, running the answer function, loops on byte 1 of the
shared file and, when the byte is written by send, answer reads the message from the file via its
memory map. The answer function then puts the message into uppercase and writes it back to the
file, and send (waiting for a reply) reads the message and displays it.

send writes a message and reads the uppercase reply.

Hello. Is there anybody out there?

response from ANSWER is:
HELLO. IS THERE ANYBODY OUT THERE?
Enter text (or RETURN to end):

answer reads the message from send.

Received message from SEND:
Hello. Is there anybody out there?

Enter a second message at the prompt display by the send function. send writes the second message
to the file.

I received your reply.

response from ANSWER is:
I RECEIVED YOUR REPLY.
Enter text (or RETURN to end):

10 Memory-Mapping Data Files

10-22

answer reads the second message, put it into uppercase, and then writes the message to the file.

Received message from SEND:
I received your reply.

In the first instance of MATLAB, press Enter to exit the example.

Terminating SEND function.

 Share Memory Between Applications

10-23

Internet File Access and JSON

11

Server Authentication
MATLAB provides programmatic interfaces to these Web service interfaces.

• RESTful (Representational state transfer)—Use the webread, webwrite, and websave functions
in “Web Access” to read content from RESTful Web services.

• HTTP (Hypertext Transfer Protocol)—Use the “HTTP Interface” API to implement advanced HTTP
messaging semantics.

To use a proxy server, see “Proxy Server Authentication” on page 11-4.

Server Authentication For RESTful Web Services
NTLM and Kerberos are not supported on Linux and macOS platforms.

Authentication Platform weboptions weboptions
Arguments

System Setup

Basic Windows
Linux
macOS

Required Username and
Password

N/A

Digest Windows
Linux
macOS

Required Username and
Password

N/A

NTLM Windows Optional Do not specify
Username or
Password

Logged into
Windows domain

Kerberos Windows Optional Do not specify
Username or
Password

Logged into
Kerberos domain

Server Authentication For HTTP Web Services
Kerberos is not supported on Linux and macOS platforms.

Server
Authentication

Platform matlab.net.http
HTTPOptions
Object

matlab.net.http
Credentials
Properties

System Setup

Basic
Digest

Windows
Linux
macOS

Credentials
property

Username and
Password

N/A

NTLM Windows Credentials
property

Username and
Password ignored

Logged into
Windows domain

NTLM Linux
macOS

Credentials
property

Username and
Password

N/A

Kerberos Windows Credentials
property

Username and
Password ignored

Logged into
Kerberos domain

11 Internet File Access and JSON

11-2

See Also
matlab.net.http.AuthenticationScheme | matlab.net.http.Credentials |
matlab.net.http.HTTPOptions

More About
• “Proxy Server Authentication” on page 11-4
• “Web Access”
• “HTTP Interface”

 Server Authentication

11-3

Proxy Server Authentication
MATLAB provides programmatic interfaces to these Web service interfaces.

• RESTful (Representational state transfer)—Use the webread, webwrite, and websave functions
in “Web Access” to read content from RESTful Web services.

• HTTP (Hypertext Transfer Protocol)—Use the “HTTP Interface” API to implement advanced HTTP
messaging semantics.

To authenticate to a server, see “Server Authentication” on page 11-2.

RESTful Web Services
MATLAB supports Basic, Digest, and NTLM proxy authentication types. To specify proxy server
settings, choose one of these:

1 “Use MATLAB Web Preferences For Proxy Server Settings” on page 11-4
2 “Use System Settings For Proxy Server Settings” on page 11-5

If you specify the values using Web preferences, then MATLAB ignores system settings.

HTTP Web Services
MATLAB supports Basic, Digest, and NTLM proxy authentication types. To specify proxy server
settings, choose one of these:

1 If you specify a ProxyURI in a matlab.net.http.HTTPOptions object, then set the Username
and Password properties in matlab.net.http.Credentials.

2 “Use MATLAB Web Preferences For Proxy Server Settings” on page 11-4
3 “Use System Settings For Proxy Server Settings” on page 11-5

MATLAB chooses the first setting in this list.

Use MATLAB Web Preferences For Proxy Server Settings
You can specify proxy server settings using MATLAB “Web Preferences”.

Note Settings in Web Preferences override system settings.

To specify the proxy server settings:

1 On the Home tab, in the Environment section, click Preferences. Select MATLAB > Web.
2 Select the Use a proxy server to connect to the Internet check box.
3 Specify values for Proxy host and Proxy port.

Examples of acceptable formats for the host are: 172.16.10.8 and ourproxy. For the port,
enter an integer only, such as 22. If you do not know the values for your proxy server, ask your
system or network administrator for the information.

11 Internet File Access and JSON

11-4

If your proxy server requires a user name and password, select the Use a proxy with
authentication check box. Then enter your proxy user name and password.

4 Ensure that your settings work by clicking the Test connection button.

MATLAB attempts to connect to https://www.mathworks.com:

• If MATLAB can access the Internet, Success! appears next to the button.
• If MATLAB cannot access the Internet, Failed! appears next to the button. Correct the values

you entered and try again. If you still cannot connect, try using the values you used when you
authenticated your MATLAB license.

5 Click OK to accept the changes.
6 Restart MATLAB to enable the changes.

Use System Settings For Proxy Server Settings
If no proxy is specified in MATLAB Web preferences, then MATLAB uses the proxy set in the
operating system preferences.

Operating System System Certs
Windows Windows Certificate Store
macOS macOS KeyChain
Linux Environment variables http_proxy and

https_proxy

To specify proxy server settings in system preferences, refer to your Windows, Linux, or macOS
operating system documentation.

MATLAB does not take into account proxy exceptions which you configure in Windows.

See Also
matlab.net.http.Credentials | matlab.net.http.HTTPOptions

More About
• “Server Authentication” on page 11-2
• “Web Access”
• “HTTP Interface”

 Proxy Server Authentication

11-5

MATLAB and Web Services Security
This topic describes how MATLAB handles security for web services. For a complete description of
computer security, you need to consult external resources.

MATLAB Does Not Verify Certificate Chains
For HTTPS connections, the webread, webwrite, and websave functions verify that the certificate
domain matches the host name of the web service. These functions do not verify the certificate chain.
For a complete description of computer security, you need to consult external resources.

See Also
webread | websave | webwrite

11 Internet File Access and JSON

11-6

Download Data from Web Service
This example shows how to download data from a web service with the webread function. The World
Bank provides various climate data via the World Bank Climate Data API. A call to this API returns
data in JSON format. webread converts JSON objects to structures that are convenient for analysis in
MATLAB.

Use webread to read USA average annual temperatures into a structure array.

api = 'http://climatedataapi.worldbank.org/climateweb/rest/v1/';
url = [api 'country/cru/tas/year/USA'];
S = webread(url)

S =

112x1 struct array with fields:

 year
 data

webread converted the data to a structure array with 112 elements. Each structure contains the
temperature for a given year, from 1901 to 2012.

S(1)

ans =

 year: 1901
 data: 6.6187

S(112)

ans =

 year: 2012
 data: 7.9395

Plot the average temperature per year. Convert the temperatures and years to numeric arrays.
Convert the years to a datetime object for ease of plotting, and convert the temperatures to degrees
Fahrenheit.

temps = [S.data];
temps = 9/5 * temps + 32;
years = [S.year];
yearstoplot = datetime(years,1,1);
figure
plot(yearstoplot, temps);
title('USA Average Temperature 1901-2012')
xlabel('Year')
ylabel('Temperature (^{\circ}F)')
xmin = datetime(1899,1,1);
xmax = datetime(2014,1,1);
xlim([xmin xmax])

 Download Data from Web Service

11-7

Overplot a least-squares fit of a line to the temperatures.

p = polyfit(years,temps,1);
ptemps = polyval(p,years);
deltat = p(1);
hold on
fl = plot(yearstoplot, ptemps);
xlim([xmin xmax])
title('USA Average Temperature Trend 1901-2012')
xlabel('Year')
ylabel('Temperature (^{\circ}F)')
deltat = num2str(10.0*deltat);
legend(fl,['Least Squares Fit, ', deltat, '^{\circ}F/decade'])
hold off

11 Internet File Access and JSON

11-8

API and data courtesy of the World Bank: Climate Data API. (See World Bank: Climate Data API for
more information about the API, and World Bank: Terms of Use.)

 Download Data from Web Service

11-9

https://data.worldbank.org/developers/climate-data-api
https://data.worldbank.org/summary-terms-of-use

Convert Data from Web Service
This example shows how to download data from a web service and use a function as a content reader
with webread.

The National Geophysical Data Center (NGDC) provides various geophysical and space weather data
via a web service. Among other data sets, the NGDC aggregates sunspot numbers published by the
American Association of Variable Star Observers (AAVSO). Use webread to download sunspot
numbers for every year since 1945.

api = 'http://www.ngdc.noaa.gov/stp/space-weather/';
url = [api 'solar-data/solar-indices/sunspot-numbers/' ...
 'american/lists/list_aavso-arssn_yearly.txt'];
spots = webread(url);
whos('spots')

 Name Size Bytes Class Attributes

 spots 1x1269 2538 char

The NGDC web service returns the sunspot data as text. By default, webread returns the data as a
character array.

spots(1:100)

ans =

 American
 Year SSN
 1945 32.3
 1946 99.9
 1947 170.9
 1948 166.6

webread can use a function to return the data as a different type. You can use readtable with
webread to return the sunspot data as a table.

Create a weboptions object that specifies a function for readtable.

myreadtable = @(filename)readtable(filename,'HeaderLines',1, ...
 'Format','%f%f','Delimiter','space','MultipleDelimsAsOne',1);
options = weboptions('ContentReader',myreadtable);

For this data, call readtable with several Name,Value input arguments to convert the data. For
example, Format indicates that each row has two numbers. Spaces are delimiters, and multiple
consecutive spaces are treated as a single delimiter. To call readtable with these input arguments,
wrap readtable and the arguments in a new function, myreadtable. Create a weboptions object
with myreadtable as the content reader.

Download sunspot data and return the data as a table.

spots = webread(url,options);
whos('spots')

 Name Size Bytes Class Attributes

 spots 76x2 2932 table

11 Internet File Access and JSON

11-10

Display the sunspot data by column and row.

spots(1:4,{'Year','SSN'})

ans =

 Year SSN
 ____ _____

 1945 32.3
 1946 99.9
 1947 170.9
 1948 166.6

Plot sunspot numbers by year. Use table functions to select sunspot numbers up to the year 2013.
Convert the Year and SSN columns to arrays and plot them.

rows = spots.Year < 2014;
vars = {'Year','SSN'};
spots = spots(rows,vars);
year = spots.Year;
numspots = spots.SSN;
figure
plot(year,numspots);
title('Sunspot Data');
xlabel('Year');
ylabel('Number of Sunspots');
xlim([1940 2015])
ylim([0 180])

 Convert Data from Web Service

11-11

Aggregated data and web service courtesy of the NGDC. Sunspot data courtesy of the AAVSO,
originally published in AAVSO Sunspot Counts: 1943-2013, AAVSO Solar Section (R. Howe, Chair).

• See NGDC Privacy Policy, Disclaimer, and Copyright for NGDC terms of service.
• See AAVSO Solar Section for more information on AAVSO solar data, including terms of use.

11 Internet File Access and JSON

11-12

https://www.ngdc.noaa.gov/ngdcinfo/privacy.html
https://aavso.org/solar

Download Web Page and Files
MATLAB provides two functions for reading content from RESTful web services: webread and
websave. With the webread function, you can read the contents of a web page to a character array
in the MATLAB workspace. With the websave function, you can save web page content to a file.

Because it can create a character array in the workspace, the webread function is useful for working
with the contents of web pages in MATLAB. The websave function is useful for saving web pages to a
local folder.

Note When webread returns HTML as a character array, remember that only the HTML in that
specific web page is retrieved. The hyperlink targets, images, and so on, are not retrieved.

If you need to pass parameters to a web page, the webread and websave functions let you define the
parameters as Name, Value pair arguments. For more information, see the webread and websave
reference pages.

Example — Use the webread Function
The following procedure demonstrates how to retrieve the contents of the web page listing the files
submitted to the MATLAB Central™ File Exchange, https://www.mathworks.com/matlabcentral/
fileexchange/. It assigns the results to a character array, fullList:

filex = 'https://www.mathworks.com/matlabcentral/fileexchange/';
fullList = webread(filex);

Retrieve a list of only those files uploaded to the File Exchange within the past seven days that
contain the word Simulink®. Set duration and term as parameters that webread passes to the web
page.

filex = 'https://www.mathworks.com/matlabcentral/fileexchange/';
recent = webread(filex,'duration',7,'term','simulink');

Example — Use the websave Function
The following example builds on the procedure in the previous section, but saves the content to a file:

% Locate the list of files at the MATLAB Central File Exchange
% uploaded within the past 7 days, that contain "Simulink."
filex = 'https://www.mathworks.com/matlabcentral/fileexchange/';

% Save the Web content to a file.
recent = websave('contains_simulink.html',filex, ...
 'duration',7,'term','simulink');

MATLAB saves the web page as contains_simulink.html. The output argument recent contains
the full path to contains_simulink.html. Call the web function to display
contains_simulink.html in a browser.

web(recent)

This page has links to files uploaded to the MATLAB Central File Exchange.

 Download Web Page and Files

11-13

https://www.mathworks.com/matlabcentral/fileexchange/
https://www.mathworks.com/matlabcentral/fileexchange/

Call Web Services from Functions
You can call webread from functions you define. Best practice is to allow your function to pass HTTP
request options to webread.

This code sample shows how to download climate data for a country. The sample defines a function in
a file named worldBankTemps.m that downloads annual temperatures from the World Bank and
converts them to degrees Fahrenheit. You can pass additional HTTP request parameters with the
options input argument. options is a weboptions object that worldBankTemps passes to
webread. You can call worldBankTemps with a country name only when you do not need to define
any other HTTP request parameters.
function temperatures = worldBankTemps(country,options)
% Get World Bank temperatures for a country, for example, 'USA'.
api = 'http://climatedataapi.worldbank.org/climateweb/rest/v1/';
api = [api 'country/cru/tas/year/'];
country = [api country];

% The options object contains additional HTTP
% request parameters. If worldBankTemps was
% not passed options as an input argument,
% create a default weboptions object.
if ~exist('options','var')
 options = weboptions;
end
s = webread(country,options);

% Convert data to arrays
temperatures = struct('Years',[],'DegreesInFahrenheit',[]);
temperatures(1).Years = [s.year];
temperatures(1).DegreesInFahrenheit = [s.data];

% Convert temperatures to Fahrenheit
temperatures(1).DegreesInFahrenheit = temperatures(1).DegreesInFahrenheit * 9/5 + 32;
end

To get temperature data for the USA, call worldBankTemps. If the connection to the World Bank web
service times out, the service returns an error message.

S = worldBankTemps('USA')

Error using webread (line 112)
The connection to
URL 'http://climatedataapi.worldbank.org/climateweb/rest/v1/country/cru/tas/year/USA'
timed out after 5.0 seconds. Set options.Timeout to a higher value.

If you create options and set its Timeout property to 60 seconds, then you can call
worldBankTemps again with options as an input argument. worldBankTemps passes options to
webread as an input argument. This time webread keeps the connection open for a maximum of 60
seconds.

options = weboptions('Timeout',60);
S = worldBankTemps('USA',options)

S =

 Years: [1x112 double]
 DegreesInFahrenheit: [1x112 double]

If your code does not allow you to pass request options to webread, that limits your ability to respond
to error messages returned by web services.

11 Internet File Access and JSON

11-14

Error Messages Concerning Web Service Options
When you use a web service function in MATLAB the function might return an error message that
advises you to set a property of options, such as options.Timeout. This table shows some typical
error messages that refer to options properties and actions you can take in response.

Error Message Contains Phrase Action To Be Taken
Set options.Timeout to a higher value. options = weboptions('Timeout',60)

data = webread(url,options)
Set options.ContentType to 'json'. options =

weboptions('ContentType','json')
data = webread(url,options)

. . . the provided authentication
parameters, options.Username and
options.Password, are incorrect.

options = weboptions('Username','your
username','Password','your password')
data = webread(url,options)

 Call Web Services from Functions

11-15

Send Email
To send an email from MATLAB, use the sendmail function. You can also attach files to an email,
which lets you mail files directly from MATLAB. To use sendmail, set up your email address and your
SMTP server information with the setpref function.

The setpref function defines two mail-related preferences:

• Email address: This preference sets your email address that will appear on the message.

setpref('Internet','E_mail','youraddress@yourserver.com');

• SMTP server: This preference sets your outgoing SMTP server address, which can be almost any
email server that supports the Post Office Protocol (POP) or the Internet Message Access Protocol
(IMAP).

setpref('Internet','SMTP_Server','mail.server.network');

Find your outgoing SMTP server address in your email account settings in your email client
application. You can also contact your system administrator for the information.

Once you have properly configured MATLAB, you can use the sendmail function. The sendmail
function requires at least two arguments: the recipient's email address and the email subject.

sendmail('recipient@someserver.com','Hello From MATLAB!');

You can supply multiple email addresses using a cell array of character vectors.

sendmail({'recipient@someserver.com','recipient2@someserver.com'}, ...
 'Hello From MATLAB!');

You can specify a message body.

sendmail('recipient@someserver.com','Hello From MATLAB!', ...
 'Thanks for using sendmail.');

You can attach files to an email.

sendmail('recipient@someserver.com','Hello from MATLAB!', ...
 'Thanks for using sendmail.','C:\yourFileSystem\message.txt');

You cannot attach a file without including a message. However, the message can be empty.

You can attach multiple files to an email.

sendmail('recipient@someserver.com','Hello from MATLAB!', ...
 'Thanks for using sendmail.',{'C:\yourFileSystem\message.txt', ...
 'C:\yourFileSystem\message2.txt'});

See Also
sendmail | setpref

11 Internet File Access and JSON

11-16

Perform FTP File Operations
This example shows how to use an FTP object to connect to an FTP server and perform remote file
operations. To perform any file operation on an FTP server, follow these steps:

1 Connect to the server using the ftp function.
2 Perform operations using the appropriate MATLAB® FTP functions, such as the cd, dir, and

mget functions. Specify the FTP object for all operations.
3 When you finish work on the server, close the connection using the close function.

The National Centers for Environmental Information (NCEI) maintain an anonymous FTP service
providing public access to geophysical data. Access the FTP server to list its contents, download a
file, and list contents of a subfolder.

First, open the connection.

ftpobj = ftp('ftp.ngdc.noaa.gov')

ftpobj =

 FTP Object
 host: ftp.ngdc.noaa.gov
 user: anonymous
 dir: /
 mode: binary

List the contents of the top-level folder on the FTP server.

dir(ftpobj)

DMSP Solid_Earth google12c4c939d7b90761.html mgg
INDEX.txt coastwatch hazards pub
README.txt dmsp4alan index.html tmp
STP ftp.html international wdc
Snow_Ice geomag ionosonde

Download the file named INDEX.txt using the mget function. mget copies the file to the current
MATLAB folder on your local machine. To view the contents of your copy of the file, use the type
function.

mget(ftpobj,'INDEX.txt');
type INDEX.txt

 National Centers for Environmental Information (NCEI),
 formerly the National Geophysical Data Center (NGDC)

 INDEX of anonymous ftp area
 ftp.ngdc.noaa.gov

DIRECTORY/FILE DESCRIPTION OF CONTENTS
-------------- ---
pub/ Public access area
DMSP/ Defense Meteorological Satellite Data Archive
geomag/ Geomagnetism and geomagnetics models

 Perform FTP File Operations

11-17

hazards/ Natural Hazards data, volcanoes, tsunamis, earthquakes
international/ International program information on IAGA/Oersted/wdc
ionosonde/ Ionosonde data
mgg/ Limited Marine Geology and Geophysics (most data in http area)
OD/ Office of the Director
Snow_Ice/ Snow and Ice Data Center
Solid_Earth/ Historic Solid Earth Geophysics
STP/ Solar-Terrestrial Physics
tmp/ Pickup area for temporary outgoing data
wdc/ World Data Service for Geophysics, formerly World Data Centers
-------------- ---
Please see file README.txt in this directory for more information and how to
contact NCEI. Direct E-mail inquiries to ncei.info@noaa.gov

Also see our web site: http://www.ngdc.noaa.gov/

NCEI is part of the:
U.S. Department of Commerce, National Oceanic and Atmospheric Administration (NOAA),
National Environmental Satellite, Data and Information Service (NESDIS)

Change to the subfolder named pub on the FTP server.

cd(ftpobj,'pub')

ans =
'/pub'

List the contents. pub is now the current folder on the FTP server. However, note that the current
MATLAB folder on your local machine has not changed. When you specify an FTP object using
functions such as cd and dir, the operations take place on the FTP server, not your local machine.

dir(ftpobj)

WebCD coast glac_lib krm outgoing results rgon

Close the connection to the FTP server.

close(ftpobj)

FTP service courtesy of the NCEI. See the NCEI Privacy Policy, Disclaimer, and Copyright for NCEI
terms of service.

See Also
cd | close | dir | ftp | mget

Related Examples
• “Download Data from Web Service” on page 11-7
• “Download Web Page and Files” on page 11-13
• “Send Email” on page 11-16
• “Web Browsers and MATLAB”

11 Internet File Access and JSON

11-18

https://www.ngdc.noaa.gov/ngdcinfo/privacy.html

Display Hyperlinks in the Command Window
In this section...
“Create Hyperlinks to Web Pages” on page 11-19
“Transfer Files Using FTP” on page 11-19

Create Hyperlinks to Web Pages
When you create a hyperlink to a Web page, append a full hypertext address on a single line as input
to the disp or fprintf command. For example, the following command:

disp('The MathWorks Web Site')

displays the following hyperlink in the Command Window:

The MathWorks Web Site

When you click this hyperlink, a MATLAB Web browser opens and displays the requested page.

Transfer Files Using FTP
To create a link to an FTP site, enter the site address as input to the disp command as follows:

disp('The MathWorks FTP Site')

This command displays the following as a link in the Command Window:

The MathWorks FTP Site

When you click the link, a MATLAB browser opens and displays the requested FTP site.

 Display Hyperlinks in the Command Window

11-19

https://www.mathworks.com
ftp://ftp.mathworks.com

Customize JSON Encoding for MATLAB Classes
This example shows how to customize the jsonencode function for a user-defined MATLAB class.

This class Person.m has a public property Name and a private property Age. If you call jsonencode
to encode the data, the function only converts the public property.

classdef Person
 properties
 Name;
 end
 properties (Access = private)
 Age;
 end
 methods
 function obj = Person(name,age)
 obj.Name = name;
 obj.Age = age;
 end
 end
end

1 Display a JSON-encoded instance of Person.

obj = Person('Luke',19);
jsonencode(obj)

ans =

 '{"Name":"Luke"}'
2 To display the private property Age, customize jsonencode by adding this function to the

methods block:

function json = jsonencode(obj)
 s = struct("Name", obj.Name, "Age", obj.Age);
 json = jsonencode(s);
end

The signature of the function must match the jsonencode signature, which takes a class object
as input and returns a string or a character vector in JSON format.

3 Display the customized object.

obj = Person('Luke',19);
jsonencode(obj)

ans =

 '{"Name":"Luke","Age":19}'

See Also
jsonencode

11 Internet File Access and JSON

11-20

Large Data

• “Getting Started with MapReduce” on page 12-3
• “Write a Map Function” on page 12-9
• “Write a Reduce Function” on page 12-13
• “Speed Up and Deploy MapReduce Using Other Products” on page 12-17
• “Build Effective Algorithms with MapReduce” on page 12-18
• “Debug MapReduce Algorithms” on page 12-20
• “Analyze Big Data in MATLAB Using MapReduce” on page 12-25
• “Find Maximum Value with MapReduce” on page 12-32
• “Compute Mean Value with MapReduce” on page 12-35
• “Compute Mean by Group Using MapReduce” on page 12-38
• “Create Histograms Using MapReduce” on page 12-43
• “Simple Data Subsetting Using MapReduce” on page 12-50
• “Using MapReduce to Compute Covariance and Related Quantities” on page 12-56
• “Compute Summary Statistics by Group Using MapReduce” on page 12-61
• “Using MapReduce to Fit a Logistic Regression Model” on page 12-67
• “Tall Skinny QR (TSQR) Matrix Factorization Using MapReduce” on page 12-73
• “Compute Maximum Average HSV of Images with MapReduce” on page 12-78
• “Getting Started with Datastore” on page 12-84
• “Select Datastore for File Format or Application” on page 12-88
• “Work with Remote Data” on page 12-91
• “Read and Analyze Large Tabular Text File” on page 12-96
• “Read and Analyze Image Files” on page 12-98
• “Read and Analyze MAT-File with Key-Value Data” on page 12-102
• “Read and Analyze Hadoop Sequence File” on page 12-105
• “Develop Custom Datastore” on page 12-107
• “Testing Guidelines for Custom Datastores” on page 12-116
• “Develop Custom Datastore for DICOM Data” on page 12-124
• “Set Up Datastore for Processing on Different Machines or Clusters” on page 12-130
• “Apache Parquet Data Type Mappings” on page 12-133
• “Tall Arrays for Out-of-Memory Data” on page 12-136
• “Deferred Evaluation of Tall Arrays” on page 12-142
• “Index and View Tall Array Elements” on page 12-147
• “Histograms of Tall Arrays” on page 12-156
• “Visualization of Tall Arrays” on page 12-161
• “Grouped Statistics Calculations with Tall Arrays” on page 12-169

12

• “Extend Tall Arrays with Other Products” on page 12-175
• “Analyze Big Data in MATLAB Using Tall Arrays” on page 12-177
• “Develop Custom Tall Array Algorithms” on page 12-186

12 Large Data

12-2

Getting Started with MapReduce
As the number and type of data acquisition devices grows annually, the sheer size and rate of data
being collected is rapidly expanding. These big data sets can contain gigabytes or terabytes of data,
and can grow on the order of megabytes or gigabytes per day. While the collection of this information
presents opportunities for insight, it also presents many challenges. Most algorithms are not
designed to process big data sets in a reasonable amount of time or with a reasonable amount of
memory. MapReduce allows you to meet many of these challenges to gain important insights from
large data sets.

In this section...
“What Is MapReduce?” on page 12-3
“MapReduce Algorithm Phases” on page 12-3
“Example MapReduce Calculation” on page 12-4

What Is MapReduce?
MapReduce is a programming technique for analyzing data sets that do not fit in memory. You may be
familiar with Hadoop® MapReduce, which is a popular implementation that works with the Hadoop
Distributed File System (HDFS™). MATLAB provides a slightly different implementation of the
MapReduce technique with the mapreduce function.

mapreduce uses a datastore to process data in small blocks that individually fit into memory. Each
block goes through a Map phase, which formats the data to be processed. Then the intermediate data
blocks go through a Reduce phase, which aggregates the intermediate results to produce a final
result. The Map and Reduce phases are encoded by map and reduce functions, which are primary
inputs to mapreduce. There are endless combinations of map and reduce functions to process data,
so this technique is both flexible and extremely powerful for tackling large data processing tasks.

mapreduce lends itself to being extended to run in several environments. For more information about
these capabilities, see “Speed Up and Deploy MapReduce Using Other Products” on page 12-17.

The utility of the mapreduce function lies in its ability to perform calculations on large collections of
data. Thus, mapreduce is not well-suited for performing calculations on normal sized data sets which
can be loaded directly into computer memory and analyzed with traditional techniques. Instead, use
mapreduce to perform a statistical or analytical calculation on a data set that does not fit in memory.

Each call to the map or reduce function by mapreduce is independent of all others. For example, a
call to the map function cannot depend on inputs or results from a previous call to the map function.
It is best to break up such calculations into multiple calls to mapreduce.

MapReduce Algorithm Phases
mapreduce moves each block of data in the input datastore through several phases before reaching
the final output. The following figure outlines the phases of the algorithm for mapreduce.

 Getting Started with MapReduce

12-3

The algorithm has the following steps:

1 mapreduce reads a block of data from the input datastore using [data,info] = read(ds),
and then calls the map function to work on that block.

2 The map function receives the block of data, organizes it or performs a precursory calculation,
and then uses the add and addmulti functions to add key-value pairs to an intermediate data
storage object called a KeyValueStore. The number of calls to the map function by mapreduce
is equal to the number of blocks in the input datastore.

3 After the map function works on all of the blocks of data in the datastore, mapreduce groups all
of the values in the intermediate KeyValueStore object by unique key.

4 Next, mapreduce calls the reduce function once for each unique key added by the map function.
Each unique key can have many associated values. mapreduce passes the values to the reduce
function as a ValueIterator object, which is an object used to iterate over the values. The
ValueIterator object for each unique key contains all the associated values for that key.

5 The reduce function uses the hasnext and getnext functions to iterate through the values in
the ValueIterator object one at a time. Then, after aggregating the intermediate results from
the map function, the reduce function adds final key-value pairs to the output using the add and
addmulti functions. The order of the keys in the output is the same as the order in which the
reduce function adds them to the final KeyValueStore object. That is, mapreduce does not
explicitly sort the output.

Note The reduce function writes the final key-value pairs to a final KeyValueStore object.
From this object, mapreduce pulls the key-value pairs into the output datastore, which is a
KeyValueDatastore object by default.

Example MapReduce Calculation
This example uses a simple calculation (the mean travel distance in a set of flight data) to illustrate
the steps needed to run mapreduce.

Prepare Data

The first step to using mapreduce is to construct a datastore for the data set. Along with the map and
reduce functions, the datastore for a data set is a required input to mapreduce, since it allows
mapreduce to process the data in blocks.

12 Large Data

12-4

mapreduce works with most types of datastores. For example, create a TabularTextDatastore
object for the airlinesmall.csv data set.
ds = tabularTextDatastore('airlinesmall.csv','TreatAsMissing','NA')

ds =

 TabularTextDatastore with properties:

 Files: {
 ' ...\matlab\toolbox\matlab\demos\airlinesmall.csv'
 }
 Folders: {
 ' ...\matlab\toolbox\matlab\demos'
 }
 FileEncoding: 'UTF-8'
 AlternateFileSystemRoots: {}
 PreserveVariableNames: false
 ReadVariableNames: true
 VariableNames: {'Year', 'Month', 'DayofMonth' ... and 26 more}
 DatetimeLocale: en_US

 Text Format Properties:
 NumHeaderLines: 0
 Delimiter: ','
 RowDelimiter: '\r\n'
 TreatAsMissing: 'NA'
 MissingValue: NaN

 Advanced Text Format Properties:
 TextscanFormats: {'%f', '%f', '%f' ... and 26 more}
 TextType: 'char'
 ExponentCharacters: 'eEdD'
 CommentStyle: ''
 Whitespace: ' \b\t'
 MultipleDelimitersAsOne: false

 Properties that control the table returned by preview, read, readall:
 SelectedVariableNames: {'Year', 'Month', 'DayofMonth' ... and 26 more}
 SelectedFormats: {'%f', '%f', '%f' ... and 26 more}
 ReadSize: 20000 rows
 OutputType: 'table'
 RowTimes: []

 Write-specific Properties:
 SupportedOutputFormats: ["txt" "csv" "xlsx" "xls" "parquet" "parq"]
 DefaultOutputFormat: "txt"

Several of the previously described options are useful in the context of mapreduce. The mapreduce
function executes read on the datastore to retrieve data to pass to the map function. Therefore, you
can use the SelectedVariableNames, SelectedFormats, and ReadSize options to directly
configure the block size and type of data that mapreduce passes to the map function.

For example, to select the Distance (total flight distance) variable as the only variable of interest,
specify SelectedVariableNames.

ds.SelectedVariableNames = 'Distance';

Now, whenever the read, readall, or preview functions act on ds, they will return only
information for the Distance variable. To confirm this, you can preview the first few rows of data in
the datastore. This allows you to examine the format of the data that the mapreduce function will
pass to the map function.

preview(ds)

ans =

 8×1 table

 Distance

 Getting Started with MapReduce

12-5

 308
 296
 480
 296
 373
 308
 447
 954

To view the exact data that mapreduce will pass to the map function, use read.

For additional information and a complete summary of the available options, see “Datastore”.

Write Map and Reduce Functions

The mapreduce function automatically calls the map and reduce functions during execution, so these
functions must meet certain requirements to run properly.

1 The inputs to the map function are data, info, and intermKVStore:

• data and info are the result of a call to the read function on the input datastore, which
mapreduce executes automatically before each call to the map function.

• intermKVStore is the name of the intermediate KeyValueStore object to which the map
function needs to add key-value pairs. The add and addmulti functions use this object name
to add key-value pairs. If none of the calls to the map function add key-value pairs to
intermKVStore, then mapreduce does not call the reduce function and the resulting
datastore is empty.

A simple example of a map function is:

function MeanDistMapFun(data, info, intermKVStore)
 distances = data.Distance(~isnan(data.Distance));
 sumLenValue = [sum(distances) length(distances)];
 add(intermKVStore, 'sumAndLength', sumLenValue);
end

This map function has only three lines, which perform some straightforward roles. The first line
filters out all NaN values in the block of distance data. The second line creates a two-element
vector with the total distance and count for the block, and the third line adds that vector of
values to intermKVStore with the key, 'sumAndLength'. After this map function runs on all of
the blocks of data in ds, the intermKVStore object contains the total distance and count for
each block of distance data.

Save this function in your current folder as MeanDistMapFun.m.
2 The inputs to the reduce function are intermKey, intermValIter, and outKVStore:

• intermKey is for the active key added by the map function. Each call to the reduce function
by mapreduce specifies a new unique key from the keys in the intermediate KeyValueStore
object.

• intermValIter is the ValueIterator associated with the active key, intermKey. This
ValueIterator object contains all of the values associated with the active key. Scroll
through the values using the hasnext and getnext functions.

• outKVStore is the name for the final KeyValueStore object to which the reduce function
needs to add key-value pairs. mapreduce takes the output key-value pairs from outKVStore

12 Large Data

12-6

and returns them in the output datastore, which is a KeyValueDatastore object by default.
If none of the calls to the reduce function add key-value pairs to outKVStore, then
mapreduce returns an empty datastore.

A simple example of a reduce function is:

function MeanDistReduceFun(intermKey, intermValIter, outKVStore)
 sumLen = [0 0];
 while hasnext(intermValIter)
 sumLen = sumLen + getnext(intermValIter);
 end
 add(outKVStore, 'Mean', sumLen(1)/sumLen(2));
end

This reduce function loops through each of the distance and count values in intermValIter,
keeping a running total of the distance and count after each pass. After this loop, the reduce
function calculates the overall mean flight distance with a simple division, and then adds a single
key to outKVStore.

Save this function in your current folder as MeanDistReduceFun.m.

For information about writing more advanced map and reduce functions, see “Write a Map Function”
on page 12-9 and “Write a Reduce Function” on page 12-13.

Run mapreduce

After you have a datastore, a map function, and a reduce function, you can call mapreduce to
perform the calculation. To calculate the average flight distance in the data set, call mapreduce
using ds, MeanDistMapFun, and MeanDistReduceFun.

outds = mapreduce(ds, @MeanDistMapFun, @MeanDistReduceFun);

* MAPREDUCE PROGRESS *

Map 0% Reduce 0%
Map 16% Reduce 0%
Map 32% Reduce 0%
Map 48% Reduce 0%
Map 65% Reduce 0%
Map 81% Reduce 0%
Map 97% Reduce 0%
Map 100% Reduce 0%
Map 100% Reduce 100%

By default, the mapreduce function displays progress information at the command line and returns a
KeyValueDatastore object that points to files in the current folder. You can adjust all three of these
options using the Name,Value pair arguments for 'OutputFolder', 'OutputType', and
'Display'. For more information, see the reference page for mapreduce.

View Results

Use the readall function to read the key-value pairs from the output datastore.

readall(outds)

ans =

 Getting Started with MapReduce

12-7

 1×2 table

 Key Value
 ________ ____________

 {'Mean'} {[702.1630]}

See Also
mapreduce | tabularTextDatastore

Related Examples
• “Build Effective Algorithms with MapReduce” on page 12-18

12 Large Data

12-8

Write a Map Function
In this section...
“Role of Map Function in MapReduce” on page 12-9
“Requirements for Map Function” on page 12-10
“Sample Map Functions” on page 12-10

Role of Map Function in MapReduce
mapreduce requires both an input map function that receives blocks of data and that outputs
intermediate results, and an input reduce function that reads the intermediate results and produces a
final result. Thus, it is normal to break up a calculation into two related pieces for the map and
reduce functions to fulfill separately. For example, to find the maximum value in a data set, the map
function can find the maximum value in each block of input data, and then the reduce function can
find the single maximum value among all of the intermediate maxima.

This figure shows the Map phase of the mapreduce algorithm.

The Map phase of the mapreduce algorithm has the following steps:

1 mapreduce reads a single block of data using the read function on the input datastore, then
calls the map function to work on the block.

2 The map function then works on the individual block of data and adds one or more key-value
pairs to the intermediate KeyValueStore object using the add or addmulti functions.

3 mapreduce repeats this process for each of the blocks of data in the input datastore, so that the
total number of calls to the map function is equal to the number of blocks of data. The ReadSize
property of the datastore determines the number of data blocks.

The Map phase of the mapreduce algorithm is complete when the map function processes each of
the blocks of data in the input datastore. The result of this phase of the mapreduce algorithm is a

 Write a Map Function

12-9

KeyValueStore object that contains all of the key-value pairs added by the map function. After the
Map phase, mapreduce prepares for the Reduce phase by grouping all the values in the
KeyValueStore object by unique key.

Requirements for Map Function
mapreduce automatically calls the map function for each block of data in the input datastore. The
map function must meet certain basic requirements to run properly during these automatic calls.
These requirements collectively ensure the proper movement of data through the Map phase of the
mapreduce algorithm.

The inputs to the map function are data, info, and intermKVStore:

• data and info are the result of a call to the read function on the input datastore, which
mapreduce executes automatically before each call to the map function.

• intermKVStore is the name of the intermediate KeyValueStore object to which the map
function needs to add key-value pairs. The add and addmulti functions use this object name to
add key-value pairs. If the map function does not add any key-value pairs to the intermKVStore
object, then mapreduce does not call the reduce function and the resulting datastore is empty.

In addition to these basic requirements for the map function, the key-value pairs added by the map
function must also meet these conditions:

1 Keys must be numeric scalars, character vectors, or strings. Numeric keys cannot be NaN,
complex, logical, or sparse.

2 All keys added by the map function must have the same class.
3 Values can be any MATLAB object, including all valid MATLAB data types.

Note The above key-value pair requirements may differ when using other products with mapreduce.
See the documentation for the appropriate product to get product-specific key-value pair
requirements.

Sample Map Functions
Here are a few illustrative map functions used in mapreduce examples.

Identity Map Function

A map function that simply returns what mapreduce passes to it is called an identity mapper. An
identity mapper is useful to take advantage of the grouping of values by unique key before doing
calculations in the reduce function. The identityMapper mapper file is one of the mappers used in
the example “Tall Skinny QR (TSQR) Matrix Factorization Using MapReduce” on page 12-73.

function identityMapper(data, info, intermKVStore)
 % This mapper function simply copies the data and add them to the
 % intermKVStore as intermediate values.
 x = data.Value{:,:};
 add(intermKVStore,'Identity', x);
end

12 Large Data

12-10

Simple Map Function

One of the simplest examples of a nonidentity mapper is maxArrivalDelayMapper, which is the
mapper for the example “Find Maximum Value with MapReduce” on page 12-32. For each chunk of
input data, this mapper calculates the maximum arrival delay and adds a key-value pair to the
intermediate KeyValueStore.
function maxArrivalDelayMapper (data, info, intermKVStore)
 partMax = max(data.ArrDelay);
 add(intermKVStore, 'PartialMaxArrivalDelay',partMax);
end

Advanced Map Function

A more advanced example of a mapper is statsByGroupMapper, which is the mapper for the
example “Compute Summary Statistics by Group Using MapReduce” on page 12-61. This mapper
uses a nested function to calculate several statistical quantities (count, mean, variance, and so on) for
each chunk of input data, and then adds several key-value pairs to the intermediate KeyValueStore
object. Also, this mapper uses four input arguments, whereas mapreduce only accepts a map
function with three input arguments. To get around this, pass in the extra parameter using an
anonymous function during the call to mapreduce, as outlined in the example.

function statsByGroupMapper(data, ~, intermKVStore, groupVarName)
 % Data is a n-by-3 table. Remove missing values first
 delays = data.ArrDelay;
 groups = data.(groupVarName);
 notNaN =~isnan(delays);
 groups = groups(notNaN);
 delays = delays(notNaN);
 % Find the unique group levels in this chunk
 [intermKeys,~,idx] = unique(groups, 'stable');
 % Group delays by idx and apply @grpstatsfun function to each group
 intermVals = accumarray(idx,delays,size(intermKeys),@grpstatsfun);
 addmulti(intermKVStore,intermKeys,intermVals);
 function out = grpstatsfun(x)
 n = length(x); % count
 m = sum(x)/n; % mean
 v = sum((x-m).^2)/n; % variance
 s = sum((x-m).^3)/n; % skewness without normalization
 k = sum((x-m).^4)/n; % kurtosis without normalization
 out = {[n, m, v, s, k]};
 end
end

More Map Functions

For more information about common programming patterns in map or reduce functions, see “Build
Effective Algorithms with MapReduce” on page 12-18.

See Also
add | addmulti | mapreduce | tabularTextDatastore

More About
• KeyValueStore
• “Write a Reduce Function” on page 12-13

 Write a Map Function

12-11

• “Getting Started with MapReduce” on page 12-3

12 Large Data

12-12

Write a Reduce Function
In this section...
“Role of the Reduce Function in MapReduce” on page 12-13
“Requirements for Reduce Function” on page 12-14
“Sample Reduce Functions” on page 12-14

Role of the Reduce Function in MapReduce
mapreduce requires both an input map function that receives blocks of data and that outputs
intermediate results, and an input reduce function that reads the intermediate results and produces a
final result. Thus, it is normal to break up a calculation into two related pieces for the map and
reduce functions to fulfill separately. For example, to find the maximum value in a data set, the map
function can find the maximum value in each block of input data, and then the reduce function can
find the single maximum value among all of the intermediate maxima.

This figure shows the Reduce phase of the mapreduce algorithm.

The Reduce phase of the mapreduce algorithm has the following steps:

1 The result of the Map phase of the mapreduce algorithm is an intermediate KeyValueStore
object that contains all of the key-value pairs added by the map function. Before calling the
reduce function, mapreduce groups the values in the intermediate KeyValueStore object by
unique key. Each unique key in the intermediate KeyValueStore object results in a single call to
the reduce function.

2 For each key, mapreduce creates a ValueIterator object that contains all of the values
associated with that key.

3 The reduce function scrolls through the values from the ValueIterator object using the
hasnext and getnext functions, which are typically used in a while loop.

4 After performing a summary calculation, the reduce function adds one or more key-value pairs to
the final KeyValueStore object using the add and addmulti functions.

 Write a Reduce Function

12-13

The Reduce phase of the mapreduce algorithm is complete when the reduce function processes all of
the unique intermediate keys and their associated values. The result of this phase of the mapreduce
algorithm (similar to the Map phase) is a KeyValueStore object containing all of the final key-value
pairs added by the reduce function. After the Reduce phase, mapreduce pulls the key-value pairs
from the KeyValueStore and returns them in a datastore (a KeyValueDatastore object by
default). The key-value pairs in the output datastore are not in sorted order; they appear in the same
order as they were added by the reduce function.

Requirements for Reduce Function
mapreduce automatically calls the reduce function for each unique key in the intermediate
KeyValueStore object, so the reduce function must meet certain basic requirements to run properly
during these automatic calls. These requirements collectively ensure the proper movement of data
through the Reduce phase of the mapreduce algorithm.

The inputs to the reduce function are intermKey, intermValIter, and outKVStore:

• intermKey is one of the unique keys added by the map function. Each call to the reduce function
by mapreduce specifies a new unique key from the keys in the intermediate KeyValueStore
object.

• intermValIter is the ValueIterator object associated with the active key, intermKey. This
ValueIterator object contains all of the values associated with the active key. Scroll through
the values using the hasnext and getnext functions.

• outKVStore is the name for the final KeyValueStore object to which the reduce function needs
to add key-value pairs. The add and addmulti functions use this object name to add key-value
pairs to the output. mapreduce takes the output key-value pairs from outKVStore and returns
them in the output datastore, which is a KeyValueDatastore object by default. If the reduce
function does not add any key-value pairs to outKVStore, then mapreduce returns an empty
datastore.

In addition to these basic requirements for the reduce function, the key-value pairs added by the
reduce function must also meet these conditions:

1 Keys must be numeric scalars, character vectors, or strings. Numeric keys cannot be NaN,
logical, complex, or sparse.

2 All keys added by the reduce function must have the same class, but that class may differ from
the class of the keys added by the map function.

3 If the OutputType argument of mapreduce is 'Binary' (the default), then a value added by
the reduce function can be any MATLAB object, including all valid MATLAB data types.

4 If the OutputType argument of mapreduce is 'TabularText', then a value added by the
reduce function can be a numeric scalar, character vector, or string. In this case, the value
cannot be NaN, complex, logical, or sparse.

Note The above key-value pair requirements may differ when using other products with mapreduce.
See the documentation for the appropriate product to get product-specific key-value pair
requirements.

Sample Reduce Functions
Here are a few illustrative reduce functions used in mapreduce examples.

12 Large Data

12-14

Simple Reduce Function

One of the simplest examples of a reducer is maxArrivalDelayReducer, which is the reducer for
the example “Find Maximum Value with MapReduce” on page 12-32. The map function in this
example finds the maximum arrival delay in each chunk of input data. Then the reduce function
finishes the task by finding the single maximum value among all of the intermediate maxima. To find
the maximum value, the reducer scrolls through the values in the ValueIterator object and
compares each value to the current maximum. mapreduce only calls this reducer function once,
since the mapper adds a single unique key to the intermediate KeyValueStore object. The reduce
function adds a single key-value pair to the output.
function maxArrivalDelayReducer(intermKey, intermValIter, outKVStore)
 % intermKey is 'PartialMaxArrivalDelay'. intermValIter is an iterator of
 % all values that has the key 'PartialMaxArrivalDelay'.
 maxVal = -Inf;
 while hasnext(intermValIter)
 maxVal = max(getnext(intermValIter), maxVal);
 end
 % The key-value pair added to outKVStore will become the output of mapreduce
 add(outKVStore,'MaxArrivalDelay',maxVal);
end

Advanced Reduce Function

A more advanced example of a reducer is statsByGroupReducer, which is the reducer for the
example “Compute Summary Statistics by Group Using MapReduce” on page 12-61. The map
function in this example groups the data in each input using an extra parameter (airline carrier,
month, and so on), and then calculates several statistical quantities for each group of data. The
reduce function finishes the task by retrieving the statistical quantities and concatenating them into
long vectors, and then using the vectors to calculate the final statistical quantities for count, mean,
variance, skewness, and kurtosis. The reducer stores these values as fields in a structure, so that
each unique key has a structure of statistical quantities in the output.
function statsByGroupReducer(intermKey, intermValIter, outKVStore)
% Reducer function for the StatisticsByGroupMapReduceExample.

% Copyright 2014 The MathWorks, Inc.

n = [];
m = [];
v = [];
s = [];
k = [];

% get all sets of intermediate statistics
while hasnext(intermValIter)
 value = getnext(intermValIter);
 n = [n; value(1)];
 m = [m; value(2)];
 v = [v; value(3)];
 s = [s; value(4)];
 k = [k; value(5)];
end
% Note that this approach assumes the concatenated intermediate values fit
% in memory. Refer to the reducer function, covarianceReducer, of the
% CovarianceMapReduceExample for an alternative pairwise reduction approach

% combine the intermediate results
count = sum(n);
meanVal = sum(n.*m)/count;
d = m - meanVal;
variance = (sum(n.*v) + sum(n.*d.^2))/count;
skewnessVal = (sum(n.*s) + sum(n.*d.*(3*v + d.^2)))./(count*variance^(1.5));
kurtosisVal = (sum(n.*k) + sum(n.*d.*(4*s + 6.*v.*d +d.^3)))./(count*variance^2);

 Write a Reduce Function

12-15

outValue = struct('Count',count, 'Mean',meanVal, 'Variance',variance,...
 'Skewness',skewnessVal, 'Kurtosis',kurtosisVal);

% add results to the output datastore
add(outKVStore,intermKey,outValue);

More Reduce Functions

For more information about common programming patterns in map or reduce functions, see “Build
Effective Algorithms with MapReduce” on page 12-18.

See Also
add | addmulti | getnext | hasnext | mapreduce | tabularTextDatastore

More About
• KeyValueStore
• ValueIterator
• “Write a Map Function” on page 12-9
• “Getting Started with MapReduce” on page 12-3

12 Large Data

12-16

Speed Up and Deploy MapReduce Using Other Products
In this section...
“Execution Environment” on page 12-17
“Running in Parallel” on page 12-17
“Application Deployment” on page 12-17

Execution Environment
To use mapreduce with Parallel Computing Toolbox™, MATLAB Parallel Server™, or MATLAB
Compiler™, use the mapreducer configuration function to change the execution environment for
mapreduce. This enables you to start small to verify your map and reduce functions, then quickly
scale up to run larger calculations.

Running in Parallel
Parallel Computing Toolbox can immediately speed up your mapreduce algorithms by using the full
processing power of multicore computers to execute applications with a parallel pool of workers. If
you already have Parallel Computing Toolbox installed, then you probably do not need to do anything
special to take advantage of these capabilities. For more information about using mapreduce with
Parallel Computing Toolbox, see “Run mapreduce on a Parallel Pool” (Parallel Computing Toolbox).

MATLAB Parallel Server enables you to run the same applications on a remote computer cluster. For
more information, including how to configure MATLAB Parallel Server to support Hadoop clusters,
see “Tall Arrays and mapreduce” (Parallel Computing Toolbox).

Application Deployment
MATLAB Compiler enables you to create standalone mapreduce applications or deployable archives,
which you can share with colleagues or deploy to production Hadoop systems.

For more information, see “MapReduce Applications on Hadoop Clusters” (MATLAB Compiler).

See Also
gcmr | mapreducer

 Speed Up and Deploy MapReduce Using Other Products

12-17

Build Effective Algorithms with MapReduce
The mapreduce example files that ship with MATLAB illustrate different programming techniques.
You can use these examples as a starting point to quickly prototype similar mapreduce calculations.

Note The associated files for these examples are all in the toolbox/matlab/demos/ folder.

Example Link Primary File Description Notable Programming
Techniques

“Find Maximum Value
with MapReduce” on
page 12-32

MaxMapReduceExampl
e.m

Find maximum arrival
delay

One intermediate key
and minimal
computation.

“Compute Mean Value
with MapReduce” on
page 12-35

MeanMapReduceExamp
le.m

Find mean arrival delay One intermediate key
with intermediate state
(accumulating
intermediate sum and
count).

“Create Histograms
Using MapReduce” on
page 12-43

VisualizationMapRe
duceExample.m

Visualize data using
histograms

Low-volume summaries
of data, sufficient to
generate a graphic and
gain preliminary
insights.

“Compute Mean by
Group Using
MapReduce” on page
12-38

MeanByGroupMapRedu
ceExample.m

Compute mean arrival
delay for each day of
the week

Perform simple
computations on
subgroups of input data
using several
intermediate keys.

“Compute Maximum
Average HSV of Images
with MapReduce” on
page 12-78

HueSaturationValue
Example.m

Determine average
maximum hue,
saturation, and
brightness in an image
collection

Analyzes an image
datastore using three
intermediate keys. The
outputs are filenames,
which can be used to
view the images.

“Simple Data
Subsetting Using
MapReduce” on page
12-50

SubsettingMapReduc
eExample.m

Create single table from
subset of large data set

Extraction of subset of
large data set to look
for patterns. The
procedure is
generalized using a
parameterized map
function to pass in the
subsetting criteria.

12 Large Data

12-18

Example Link Primary File Description Notable Programming
Techniques

“Using MapReduce to
Compute Covariance
and Related Quantities”
on page 12-56

CovarianceMapReduc
eExample.m

Compute covariance
and related quantities

Calculate several
intermediate values and
store them with the
same key. Use
covariance to obtain a
correlation matrix and
regression coefficients,
and to perform principal
components analysis.

“Compute Summary
Statistics by Group
Using MapReduce” on
page 12-61

StatisticsByGroupM
apReduceExample.m

Compute summary
statistics organized by
group

Use an anonymous
function to pass an
extra grouping
parameter to a
parameterized map
function. This
parameterization allows
you to quickly
recalculate statistics
using different grouping
variables.

“Using MapReduce to
Fit a Logistic
Regression Model” on
page 12-67

LogitMapReduceExam
ple.m

Fit simple logistic
regression model

Chain multiple
mapreduce calls to
carry out an iterative
regression algorithm.
An anonymous function
passes information from
one iteration to the next
to supply information
directly to the map
function.

“Tall Skinny QR (TSQR)
Matrix Factorization
Using MapReduce” on
page 12-73

TSQRMapReduceExamp
le.m

Tall skinny QR
decomposition

Chain multiple
mapreduce calls to
perform multiple
iterations of
factorizations. Also use
the info input
argument of the map
function to compute
intermediate numeric
keys.

 Build Effective Algorithms with MapReduce

12-19

Debug MapReduce Algorithms
This example shows how to debug your mapreduce algorithms in MATLAB using a simple example
file, MaxMapReduceExample.m. Debugging enables you to follow the movement of data between the
different phases of mapreduce execution and inspect the state of all intermediate variables.

In this section...
“Set Breakpoint” on page 12-20
“Execute mapreduce” on page 12-20
“Step Through Map Function” on page 12-21
“Step Through Reduce Function” on page 12-22

Set Breakpoint
Set one or more breakpoints in your map or reduce function files so you can examine the variable
values where you think the problem is. For more information, see “Set Breakpoints”.

Open the file maxArrivalDelayMapper.m.

edit maxArrivalDelayMapper.m

Set a breakpoint on line 9. This breakpoint causes execution of mapreduce to pause right before
each call to the map function adds a key-value pair to the intermediate KeyValueStore object,
named intermKVStore.

Execute mapreduce
Run the mapreduce example file MaxMapReduceExample.m. Specify mapreducer(0) to ensure that
the algorithm does not run in parallel, since parallel execution of mapreduce using Parallel
Computing Toolbox ignores breakpoints.

mapreducer(0);
MaxMapReduceExample

MATLAB stops execution of the file when it encounters the breakpoint in the map function. During
the pause in execution, you can hover over the different variable names in the map function, or type
one of the variable names at the command line to inspect the values.

In this case, the display indicates that, as yet, there are no key-value pairs in intermKVStore.

12 Large Data

12-20

Step Through Map Function
1 Continue past the breakpoint. You can use dbstep to execute a single line, or dbcont to

continue execution until MATLAB encounters another breakpoint. Alternatively, you can click

Step or Continue in the Editor tab. For more information about all the available options,
see “Debug a MATLAB Program”.

In this case, use dbstep (or click Step) to execute only line 9, which adds a key-value pair to
intermKVStore. Inspect the new display for intermKVStore.

 Debug MapReduce Algorithms

12-21

2
Now, use dbcont (or click Continue) to continue execution of mapreduce. During the next
call to the map function, MATLAB halts again on line 9. The new display for intermKVStore
indicates that it does not contain any key-value pairs, because the display is meant to show only
the most recent key-value pairs that are added in the current call to the map (or reduce)
function.

3
Step past line 9 again using dbstep (or click Step) to add the next key-value pair to
intermKVStore, and inspect the new display for the variable. MATLAB displays only the key-
value pair added during the current call to the map function.

4 Complete the debugging of the map function by removing the breakpoint and closing the file
maxArrivalDelayMapper.m.

Step Through Reduce Function
1 You can use the same process to set breakpoints and step through execution of a reduce function.

The reduce function for this example is maxArrivalDelayReducer.m. Open this file for editing.

edit maxArrivalDelayReducer.m

2 Set two breakpoints: one on line 10, and one on line 13. This enables you to inspect the
ValueIterator and the final key-value pairs added to the output, outKVStore.

3 Run the main example file.

MaxMapReduceExample

4 The execution of the example will pause when the breakpoint on line 10 is encountered. The
debug display for the ValueIterator indicates the active key and whether any values remain to
be retrieved.

12 Large Data

12-22

5
Now, remove the breakpoint on line 10 and use dbcont (or click Continue) to continue
execution of the example until the next breakpoint is reached (on line 13). Since this reduce
function continually compares each new value from the ValueIterator to the global maximum,
mapreduce execution ends by adding a single key-value pair to outKVStore.

6
Use dbstep (or click Step) to execute line 13 only. The display for outKVStore shows the
global maximum value that mapreduce will return as the final answer.

 Debug MapReduce Algorithms

12-23

7
Now use dbcont (or click Continue) to advance execution, enabling the example to finish
running. mapreduce returns the final results.

Map 100% Reduce 100%

ans =

 Key Value
 _________________ ______

 'MaxArrivalDelay' [1014]

For a complete guide to debugging in MATLAB, see “Debugging and Analysis”.

See Also
mapreduce

More About
• KeyValueStore
• ValueIterator
• “Getting Started with MapReduce” on page 12-3

12 Large Data

12-24

Analyze Big Data in MATLAB Using MapReduce
This example shows how to use the mapreduce function to process a large amount of file-based data.
The MapReduce algorithm is a mainstay of many modern "big data" applications. This example
operates on a single computer, but the code can scale up to use Hadoop®.

Throughout this example, the data set is a collection of records from the American Statistical
Association for USA domestic airline flights between 1987 and 2008. If you have experimented with
"big data" before, you may already be familiar with this data set. A small subset of this data set is
included with MATLAB® to allow you to run this and other examples.

Introduction to Datastores

Creating a datastore allows you to access a collection of data in a block-based manner. A datastore
can process arbitrarily large amounts of data, and the data can even be spread across multiple files.
You can create a datastore for many file types, including a collection of tabular text files
(demonstrated here), a SQL database (Database Toolbox™ required) or a Hadoop® Distributed File
System (HDFS™).

Create a datastore for a collection of tabular text files and preview the contents.

ds = tabularTextDatastore('airlinesmall.csv');
dsPreview = preview(ds);
dsPreview(:,10:15)

ans=8×6 table
 FlightNum TailNum ActualElapsedTime CRSElapsedTime AirTime ArrDelay
 _________ _______ _________________ ______________ _______ ________

 1503 {'NA'} 53 57 {'NA'} 8
 1550 {'NA'} 63 56 {'NA'} 8
 1589 {'NA'} 83 82 {'NA'} 21
 1655 {'NA'} 59 58 {'NA'} 13
 1702 {'NA'} 77 72 {'NA'} 4
 1729 {'NA'} 61 65 {'NA'} 59
 1763 {'NA'} 84 79 {'NA'} 3
 1800 {'NA'} 155 143 {'NA'} 11

The datastore automatically parses the input data and makes a best guess as to the type of data in
each column. In this case, use the 'TreatAsMissing' name-value pair argument to replace the
missing values correctly. For numeric variables (such as 'AirTime'), tabularTextDatastore
replaces every instance of 'NA' with a NaN value, which is the IEEE arithmetic representation for
Not-a-Number.

ds = tabularTextDatastore('airlinesmall.csv', 'TreatAsMissing', 'NA');
ds.SelectedFormats{strcmp(ds.SelectedVariableNames, 'TailNum')} = '%s';
ds.SelectedFormats{strcmp(ds.SelectedVariableNames, 'CancellationCode')} = '%s';
dsPreview = preview(ds);
dsPreview(:,{'AirTime','TaxiIn','TailNum','CancellationCode'})

ans=8×4 table
 AirTime TaxiIn TailNum CancellationCode
 _______ ______ _______ ________________

 NaN NaN {'NA'} {'NA'}

 Analyze Big Data in MATLAB Using MapReduce

12-25

 NaN NaN {'NA'} {'NA'}
 NaN NaN {'NA'} {'NA'}
 NaN NaN {'NA'} {'NA'}
 NaN NaN {'NA'} {'NA'}
 NaN NaN {'NA'} {'NA'}
 NaN NaN {'NA'} {'NA'}
 NaN NaN {'NA'} {'NA'}

Scan for rows of interest

Datastore objects contain an internal pointer to keep track of which block of data the read function
returns next. Use the hasdata and read functions to step through the entire data set, and filter the
data set to only the rows of interest. In this case, the rows of interest are flights on United Airlines
("UA") departing from Boston ("BOS").

subset = [];

while hasdata(ds)
 t = read(ds);
 t = t(strcmp(t.UniqueCarrier, 'UA') & strcmp(t.Origin, 'BOS'), :);
 subset = vertcat(subset, t);
end

subset(1:10,[9,10,15:17])

ans=10×5 table
 UniqueCarrier FlightNum ArrDelay DepDelay Origin
 _____________ _________ ________ ________ _______

 {'UA'} 121 -9 0 {'BOS'}
 {'UA'} 1021 -9 -1 {'BOS'}
 {'UA'} 519 15 8 {'BOS'}
 {'UA'} 354 9 8 {'BOS'}
 {'UA'} 701 -17 0 {'BOS'}
 {'UA'} 673 -9 -1 {'BOS'}
 {'UA'} 91 -3 2 {'BOS'}
 {'UA'} 335 18 4 {'BOS'}
 {'UA'} 1429 1 -2 {'BOS'}
 {'UA'} 53 52 13 {'BOS'}

Introduction to mapreduce

MapReduce is an algorithmic technique to "divide and conquer" big data problems. In MATLAB,
mapreduce requires three input arguments:

1 A datastore to read data from
2 A "mapper" function that is given a subset of the data to operate on. The output of the map

function is a partial calculation. mapreduce calls the mapper function one time for each block in
the datastore, with each call operating independently.

3 A "reducer" function that is given the aggregate outputs from the mapper function. The reducer
function finishes the computation begun by the mapper function, and outputs the final answer.

This is an over-simplification to some extent, since the output of a call to the mapper function can be
shuffled and combined in interesting ways before being passed to the reducer function. This will be
examined later in this example.

12 Large Data

12-26

Use mapreduce to perform a computation

A simple use of mapreduce is to find the longest flight time in the entire airline data set. To do this:

1 The "mapper" function computes the maximum of each block from the datastore.
2 The "reducer" function then computes the maximum value among all of the maxima computed by

the calls to the mapper function.

First, reset the datastore and filter the variables to the one column of interest.

reset(ds);
ds.SelectedVariableNames = {'ActualElapsedTime'};

Write the mapper function, maxTimeMapper.m. It takes three input arguments:

1 The input data, which is a table obtained by applying the read function to the datastore.
2 A collection of configuration and contextual information, info. This can be ignored in most

cases, as it is here.
3 An intermediate data storage object, which records the results of the calculations from the

mapper function. Use the add function to add Key/Value pairs to this intermediate output. In this
example, the name of the key ('MaxElapsedTime') is arbitrary.

Save the following mapper function (maxTimeMapper.m) in your current folder.

function maxTimeMapper(data, ~, intermKVStore)
 maxElapsedTime = max(data{:,:});
 add(intermKVStore, "MaxElapsedTime", maxElapsedTime)
end

Next, write the reducer function. It also takes three input arguments:

1 A set of input "keys". Keys will be discussed further below, but they can be ignored in some
simple problems, as they are here.

2 An intermediate data input object that mapreduce passes to the reducer function. This data is in
the form of Key/Value pairs, and you use the hasnext and getnext functions to iterate through
the values for each key.

3 A final output data storage object. Use the add and addmulti functions to directly add Key/Value
pairs to the output.

Save the following reducer function (maxTimeReducer.m) in your current folder.

function maxTimeReducer(~, intermValsIter, outKVStore)
 maxElapsedTime = -Inf;
 while(hasnext(intermValsIter))
 maxElapsedTime = max(maxElapsedTime, getnext(intermValsIter));
 end
 add(outKVStore, "MaxElapsedTime", maxElapsedTime);
end

Once the mapper and reducer functions are written and saved in your current folder, you can call
mapreduce using the datastore, mapper function, and reducer function. If you have Parallel
Computing Toolbox (PCT), MATLAB will automatically start a pool and parallelize execution. Use the
readall function to display the results of the MapReduce algorithm.

result = mapreduce(ds, @maxTimeMapper, @maxTimeReducer);

 Analyze Big Data in MATLAB Using MapReduce

12-27

* MAPREDUCE PROGRESS *

Map 0% Reduce 0%
Map 16% Reduce 0%
Map 32% Reduce 0%
Map 48% Reduce 0%
Map 65% Reduce 0%
Map 81% Reduce 0%
Map 97% Reduce 0%
Map 100% Reduce 0%
Map 100% Reduce 100%

readall(result)

ans=1×2 table
 Key Value
 __________________ ________

 {'MaxElapsedTime'} {[1650]}

Use of keys in mapreduce

The use of keys is an important and powerful feature of mapreduce. Each call to the mapper function
adds intermediate results to one or more named "buckets", called keys. The number of calls to the
mapper function by mapreduce corresponds to the number of blocks in the datastore.

If the mapper function adds values to multiple keys, this leads to multiple calls to the reducer
function, with each call working on only one key's intermediate values. The mapreduce function
automatically manages this data movement between the map and reduce phases of the algorithm.

This flexibility is useful in many contexts. The example below uses keys in a relatively obvious way for
illustrative purposes.

Calculating group-wise metrics with mapreduce

The behavior of the mapper function in this application is more complex. For every flight carrier
found in the input data, use the add function to add a vector of values. This vector is a count of the
number of flights for that carrier on each day in the 21+ years of data. The carrier code is the key for
this vector of values. This ensures that all of the data for each carrier will be grouped together when
mapreduce passes it to the reducer function.

Save the following mapper function (countFlightsMapper.m) in your current folder.

function countFlightsMapper(data, ~, intermKVStore)
 dayNumber = days((datetime(data.Year, data.Month, data.DayofMonth) - datetime(1987,10,1)))+1;
 daysSinceEpoch = days(datetime(2008,12,31) - datetime(1987,10,1))+1;
 [airlineName, ~, airlineIndex] = unique(data.UniqueCarrier, 'stable');

 for i = 1:numel(airlineName)
 dayTotals = accumarray(dayNumber(airlineIndex==i), 1, [daysSinceEpoch, 1]);
 add(intermKVStore, airlineName{i}, dayTotals);
 end
end

The reducer function is less complex. It simply iterates over the intermediate values and adds the
vectors together. At completion, it outputs the values in this aggregate vector. Note that the reducer

12 Large Data

12-28

function does not need to sort or examine the intermediateKeysIn values; each call to the reducer
function by mapreduce only passes the values for one airline carrier.

Save the following reducer function (countFlightsReducer.m) in your current folder.

function countFlightsReducer(intermKeysIn, intermValsIter, outKVStore)
 daysSinceEpoch = days(datetime(2008,12,31) - datetime(1987,10,1))+1;
 dayArray = zeros(daysSinceEpoch, 1);

 while hasnext(intermValsIter)
 dayArray = dayArray + getnext(intermValsIter);
 end
 add(outKVStore, intermKeysIn, dayArray);
end

Reset the datastore and select the variables of interest. Once the mapper and reducer functions are
written and saved in your current folder, you can call mapreduce using the datastore, mapper
function, and reducer function.

reset(ds);
ds.SelectedVariableNames = {'Year', 'Month', 'DayofMonth', 'UniqueCarrier'};
result = mapreduce(ds, @countFlightsMapper, @countFlightsReducer);

* MAPREDUCE PROGRESS *

Map 0% Reduce 0%
Map 16% Reduce 0%
Map 32% Reduce 0%
Map 48% Reduce 0%
Map 65% Reduce 0%
Map 81% Reduce 0%
Map 97% Reduce 0%
Map 100% Reduce 0%
Map 100% Reduce 10%
Map 100% Reduce 21%
Map 100% Reduce 31%
Map 100% Reduce 41%
Map 100% Reduce 52%
Map 100% Reduce 62%
Map 100% Reduce 72%
Map 100% Reduce 83%
Map 100% Reduce 93%
Map 100% Reduce 100%

result = readall(result);

In case this example was run with only the sample data set, load the results of the mapreduce
algorithm run on the entire data set.

load airlineResults

Visualizing the results

Using only the top 7 carriers, smooth the data to remove the effects of weekend travel. This would
otherwise clutter the visualization.

lines = result.Value;
lines = horzcat(lines{:});

 Analyze Big Data in MATLAB Using MapReduce

12-29

[~,sortOrder] = sort(sum(lines), 'descend');
lines = lines(:,sortOrder(1:7));
result = result(sortOrder(1:7),:);

lines(lines==0) = nan;
lines = smoothdata(lines,'gaussian');

Plot the data.

figure('Position',[1 1 800 600]);
plot(datetime(1987,10,1):caldays(1):datetime(2008,12,31),lines,'LineWidth',2)
title ('Domestic airline flights per day per carrier')
xlabel('Date')
ylabel('Flights per day')
legend(result.Key, 'Location', 'Best')

The plot shows the emergence of Southwest Airlines (WN) during this time period.

12 Large Data

12-30

Learning more

This example only scratches the surface of what is possible with mapreduce. See the documentation
for mapreduce for more information, including information on using it with Hadoop and MATLAB®
Parallel Server™.

Local Functions

Listed here are the local functions that mapreduce applies to the data.

function maxTimeMapper(data, ~, intermKVStore)
 maxElapsedTime = max(data{:,:});
 add(intermKVStore, "MaxElapsedTime", maxElapsedTime)
end
%---
function maxTimeReducer(~, intermValsIter, outKVStore)
 maxElapsedTime = -Inf;
 while(hasnext(intermValsIter))
 maxElapsedTime = max(maxElapsedTime, getnext(intermValsIter));
 end
 add(outKVStore, "MaxElapsedTime", maxElapsedTime);
end
%---
function countFlightsMapper(data, ~, intermKVStore)
 dayNumber = days((datetime(data.Year, data.Month, data.DayofMonth) - datetime(1987,10,1)))+1;
 daysSinceEpoch = days(datetime(2008,12,31) - datetime(1987,10,1))+1;
 [airlineName, ~, airlineIndex] = unique(data.UniqueCarrier, 'stable');

 for i = 1:numel(airlineName)
 dayTotals = accumarray(dayNumber(airlineIndex==i), 1, [daysSinceEpoch, 1]);
 add(intermKVStore, airlineName{i}, dayTotals);
 end
end
%---
function countFlightsReducer(intermKeysIn, intermValsIter, outKVStore)
 daysSinceEpoch = days(datetime(2008,12,31) - datetime(1987,10,1))+1;
 dayArray = zeros(daysSinceEpoch, 1);

 while hasnext(intermValsIter)
 dayArray = dayArray + getnext(intermValsIter);
 end
 add(outKVStore, intermKeysIn, dayArray);
end
%---

See Also
mapreduce | tabularTextDatastore

More About
• “Getting Started with MapReduce” on page 12-3
• “Build Effective Algorithms with MapReduce” on page 12-18

 Analyze Big Data in MATLAB Using MapReduce

12-31

Find Maximum Value with MapReduce
This example shows how to find the maximum value of a single variable in a data set using
mapreduce. It demonstrates the simplest use of mapreduce since there is only one key and minimal
computation.

Prepare Data

Create a datastore using the airlinesmall.csv data set. This 12-megabyte data set contains 29
columns of flight information for several airline carriers, including arrival and departure times. In this
example, select ArrDelay (flight arrival delay) as the variable of interest.

ds = tabularTextDatastore('airlinesmall.csv', 'TreatAsMissing', 'NA');
ds.SelectedVariableNames = 'ArrDelay';

The datastore treats 'NA' values as missing, and replaces the missing values with NaN values by
default. Additionally, the SelectedVariableNames property allows you to work with only the
selected variable of interest, which you can verify using preview.

preview(ds)

ans=8×1 table
 ArrDelay

 8
 8
 21
 13
 4
 59
 3
 11

Run MapReduce

The mapreduce function requires a map function and a reduce function as inputs. The mapper
receives blocks of data and outputs intermediate results. The reducer reads the intermediate results
and produces a final result.

In this example, the mapper finds the maximum arrival delay in each block of data. The mapper then
stores these maximum values as the intermediate values associated with the key
'PartialMaxArrivalDelay'.

Display the map function file.

function maxArrivalDelayMapper (data, info, intermKVStore)
 partMax = max(data.ArrDelay);
 add(intermKVStore, 'PartialMaxArrivalDelay',partMax);
end

The reducer receives a list of the maximum arrival delays for each block and finds the overall
maximum arrival delay from the list of values. mapreduce only calls this reducer once, since the
mapper only adds a single unique key. The reducer uses add to add a final key-value pair to the
output.

12 Large Data

12-32

Display the reduce function file.

function maxArrivalDelayReducer(intermKey, intermValIter, outKVStore)
 % intermKey is 'PartialMaxArrivalDelay'. intermValIter is an iterator of
 % all values that has the key 'PartialMaxArrivalDelay'.
 maxVal = -Inf;
 while hasnext(intermValIter)
 maxVal = max(getnext(intermValIter), maxVal);
 end
 % The key-value pair added to outKVStore will become the output of mapreduce
 add(outKVStore,'MaxArrivalDelay',maxVal);
end

Use mapreduce to apply the map and reduce functions to the datastore, ds.

maxDelay = mapreduce(ds, @maxArrivalDelayMapper, @maxArrivalDelayReducer);

* MAPREDUCE PROGRESS *

Map 0% Reduce 0%
Map 16% Reduce 0%
Map 32% Reduce 0%
Map 48% Reduce 0%
Map 65% Reduce 0%
Map 81% Reduce 0%
Map 97% Reduce 0%
Map 100% Reduce 0%
Map 100% Reduce 100%

mapreduce returns a datastore, maxDelay, with files in the current folder.

Read the final result from the output datastore, maxDelay.

readall(maxDelay)

ans=1×2 table
 Key Value
 ___________________ ________

 {'MaxArrivalDelay'} {[1014]}

Local Functions

Listed here are the map and reduce functions that mapreduce applies to the data.

function maxArrivalDelayMapper (data, info, intermKVStore)
 partMax = max(data.ArrDelay);
 add(intermKVStore, 'PartialMaxArrivalDelay',partMax);
end
%--
function maxArrivalDelayReducer(intermKey, intermValIter, outKVStore)
 % intermKey is 'PartialMaxArrivalDelay'. intermValIter is an iterator of
 % all values that has the key 'PartialMaxArrivalDelay'.
 maxVal = -Inf;
 while hasnext(intermValIter)
 maxVal = max(getnext(intermValIter), maxVal);
 end

 Find Maximum Value with MapReduce

12-33

 % The key-value pair added to outKVStore will become the output of mapreduce
 add(outKVStore,'MaxArrivalDelay',maxVal);
end
%--

See Also
mapreduce | tabularTextDatastore

More About
• “Getting Started with MapReduce” on page 12-3
• “Build Effective Algorithms with MapReduce” on page 12-18

12 Large Data

12-34

Compute Mean Value with MapReduce
This example shows how to compute the mean of a single variable in a data set using mapreduce. It
demonstrates a simple use of mapreduce with one key, minimal computation, and an intermediate
state (accumulating intermediate sum and count).

Prepare Data

Create a datastore using the airlinesmall.csv data set. This 12-megabyte data set contains 29
columns of flight information for several airline carriers, including arrival and departure times. In this
example, select ArrDelay (flight arrival delay) as the variable of interest.

ds = tabularTextDatastore('airlinesmall.csv', 'TreatAsMissing', 'NA');
ds.SelectedVariableNames = 'ArrDelay';

The datastore treats 'NA' values as missing, and replaces the missing values with NaN values by
default. Additionally, the SelectedVariableNames property allows you to work with only the
selected variable of interest, which you can verify using preview.

preview(ds)

ans=8×1 table
 ArrDelay

 8
 8
 21
 13
 4
 59
 3
 11

Run MapReduce

The mapreduce function requires a map function and a reduce function as inputs. The mapper
receives blocks of data and outputs intermediate results. The reducer reads the intermediate results
and produces a final result.

In this example, the mapper finds the count and sum of the arrival delays in each block of data. The
mapper then stores these values as the intermediate values associated with the key
"PartialCountSumDelay".

Display the map function file.

function meanArrivalDelayMapper (data, info, intermKVStore)
 % Data is an n-by-1 table of the ArrDelay. Remove missing values first:
 data(isnan(data.ArrDelay),:) = [];

 % Record the partial counts and sums and the reducer will accumulate them.
 partCountSum = [length(data.ArrDelay), sum(data.ArrDelay)];
 add(intermKVStore, "PartialCountSumDelay",partCountSum);
end

The reducer accepts the count and sum for each block stored by the mapper. It sums up the values to
obtain the total count and total sum. The overall mean arrival delay is a simple division of the values.

 Compute Mean Value with MapReduce

12-35

mapreduce only calls this reducer once, since the mapper only adds a single unique key. The reducer
uses add to add a single key-value pair to the output.

Display the reduce function file.

function meanArrivalDelayReducer(intermKey, intermValIter, outKVStore)
 count = 0;
 sum = 0;
 while hasnext(intermValIter)
 countSum = getnext(intermValIter);
 count = count + countSum(1);
 sum = sum + countSum(2);
 end
 meanDelay = sum/count;

 % The key-value pair added to outKVStore will become the output of mapreduce
 add(outKVStore,"MeanArrivalDelay",meanDelay);
end

Use mapreduce to apply the map and reduce functions to the datastore, ds.

meanDelay = mapreduce(ds, @meanArrivalDelayMapper, @meanArrivalDelayReducer);

* MAPREDUCE PROGRESS *

Map 0% Reduce 0%
Map 16% Reduce 0%
Map 32% Reduce 0%
Map 48% Reduce 0%
Map 65% Reduce 0%
Map 81% Reduce 0%
Map 97% Reduce 0%
Map 100% Reduce 0%
Map 100% Reduce 100%

mapreduce returns a datastore, meanDelay, with files in the current folder.

Read the final result from the output datastore, meanDelay.

readall(meanDelay)

ans=1×2 table
 Key Value
 ____________________ __________

 {'MeanArrivalDelay'} {[7.1201]}

Local Functions

Listed here are the map and reduce functions that mapreduce applies to the data.

function meanArrivalDelayMapper (data, info, intermKVStore)
 % Data is an n-by-1 table of the ArrDelay. Remove missing values first:
 data(isnan(data.ArrDelay),:) = [];

 % Record the partial counts and sums and the reducer will accumulate them.
 partCountSum = [length(data.ArrDelay), sum(data.ArrDelay)];

12 Large Data

12-36

 add(intermKVStore, "PartialCountSumDelay",partCountSum);
end
%---
function meanArrivalDelayReducer(intermKey, intermValIter, outKVStore)
 count = 0;
 sum = 0;
 while hasnext(intermValIter)
 countSum = getnext(intermValIter);
 count = count + countSum(1);
 sum = sum + countSum(2);
 end
 meanDelay = sum/count;

 % The key-value pair added to outKVStore will become the output of mapreduce
 add(outKVStore,"MeanArrivalDelay",meanDelay);
end
%---

See Also
mapreduce | tabularTextDatastore

More About
• “Getting Started with MapReduce” on page 12-3
• “Build Effective Algorithms with MapReduce” on page 12-18

 Compute Mean Value with MapReduce

12-37

Compute Mean by Group Using MapReduce
This example shows how to compute the mean by group in a data set using mapreduce. It
demonstrates how to do computations on subgroups of data.

Prepare Data

Create a datastore using the airlinesmall.csv data set. This 12-megabyte data set contains 29
columns of flight information for several airline carriers, including arrival and departure times. In this
example, select DayOfWeek and ArrDelay (flight arrival delay) as the variables of interest.

ds = tabularTextDatastore('airlinesmall.csv', 'TreatAsMissing', 'NA');
ds.SelectedVariableNames = {'ArrDelay', 'DayOfWeek'};

The datastore treats 'NA' values as missing, and replaces the missing values with NaN values by
default. Additionally, the SelectedVariableNames property allows you to work with only the
selected variables of interest, which you can verify using preview.

preview(ds)

ans=8×2 table
 ArrDelay DayOfWeek
 ________ _________

 8 3
 8 1
 21 5
 13 5
 4 4
 59 3
 3 4
 11 6

Run MapReduce

The mapreduce function requires a map function and a reduce function as inputs. The mapper
receives blocks of data and outputs intermediate results. The reducer reads the intermediate results
and produces a final result.

In this example, the mapper computes the count and sum of delays by the day of week in each block
of data, and then stores the results as intermediate key-value pairs. The keys are integers (1 to 7)
representing the days of the week and the values are two-element vectors representing the count and
sum of the delay of each day.

Display the map function file.

function meanArrivalDelayByDayMapper(data, ~, intermKVStore)
 % Data is an n-by-2 table: first column is the DayOfWeek and the second
 % is the ArrDelay. Remove missing values first.
 delays = data.ArrDelay;
 day = data.DayOfWeek;
 notNaN = ~isnan(delays);
 day = day(notNaN);
 delays = delays(notNaN);

 % find the unique days in this chunk

12 Large Data

12-38

 [intermKeys,~,idx] = unique(day, 'stable');

 % group delays by idx and apply @grpstatsfun function to each group
 intermVals = accumarray(idx,delays,size(intermKeys),@countsum);
 addmulti(intermKVStore,intermKeys,intermVals);

 function out = countsum(x)
 n = length(x); % count
 s = sum(x); % mean
 out = {[n, s]};
 end
end

After the Map phase, mapreduce groups the intermediate key-value pairs by unique key (in this case,
day of the week). Thus, each call to the reducer works on the values associated with one day of the
week. The reducer receives a list of the intermediate count and sum of delays for the day specified by
the input key (intermKey) and sums up the values into the total count, n and total sum s. Then, the
reducer calculates the overall mean, and adds one final key-value pair to the output. This key-value
pair represents the mean flight arrival delay for one day of the week.

Display the reduce function file.

function meanArrivalDelayByDayReducer(intermKey, intermValIter, outKVStore)
 n = 0;
 s = 0;

 % get all sets of intermediate results
 while hasnext(intermValIter)
 intermValue = getnext(intermValIter);
 n = n + intermValue(1);
 s = s + intermValue(2);
 end

 % accumulate the sum and count
 mean = s/n;
 % add results to the output datastore
 add(outKVStore,intermKey,mean);
end

Use mapreduce to apply the map and reduce functions to the datastore, ds.

meanDelayByDay = mapreduce(ds, @meanArrivalDelayByDayMapper, ...
 @meanArrivalDelayByDayReducer);

* MAPREDUCE PROGRESS *

Map 0% Reduce 0%
Map 16% Reduce 0%
Map 32% Reduce 0%
Map 48% Reduce 0%
Map 65% Reduce 0%
Map 81% Reduce 0%
Map 97% Reduce 0%
Map 100% Reduce 0%
Map 100% Reduce 14%
Map 100% Reduce 29%
Map 100% Reduce 43%

 Compute Mean by Group Using MapReduce

12-39

Map 100% Reduce 57%
Map 100% Reduce 71%
Map 100% Reduce 86%
Map 100% Reduce 100%

mapreduce returns a datastore, meanDelayByDay, with files in the current folder.

Read the final result from the output datastore, meanDelayByDay.

result = readall(meanDelayByDay)

result=7×2 table
 Key Value
 ___ __________

 3 {[7.0038]}
 1 {[7.0833]}
 5 {[9.4193]}
 4 {[9.3185]}
 6 {[4.2095]}
 2 {[5.8569]}
 7 {[6.5241]}

Organize Results

The integer keys (1 to 7) represent the days of the week. To organize the results more, convert the
keys to a categorical array, retrieve the numeric values from the single element cells, and rename the
variable names of the resulting table.

result.Key = categorical(result.Key, 1:7, ...
 {'Mon','Tue','Wed','Thu','Fri','Sat','Sun'});
result.Value = cell2mat(result.Value);
result.Properties.VariableNames = {'DayOfWeek', 'MeanArrDelay'}

result=7×2 table
 DayOfWeek MeanArrDelay
 _________ ____________

 Wed 7.0038
 Mon 7.0833
 Fri 9.4193
 Thu 9.3185
 Sat 4.2095
 Tue 5.8569
 Sun 6.5241

Sort the rows of the table by mean flight arrival delay. This reveals that Saturday is the best day of
the week to travel, whereas Friday is the worst.

result = sortrows(result,'MeanArrDelay')

result=7×2 table
 DayOfWeek MeanArrDelay
 _________ ____________

 Sat 4.2095
 Tue 5.8569

12 Large Data

12-40

 Sun 6.5241
 Wed 7.0038
 Mon 7.0833
 Thu 9.3185
 Fri 9.4193

Local Functions

Listed here are the map and reduce functions that mapreduce applies to the data.

function meanArrivalDelayByDayMapper(data, ~, intermKVStore)
 % Data is an n-by-2 table: first column is the DayOfWeek and the second
 % is the ArrDelay. Remove missing values first.
 delays = data.ArrDelay;
 day = data.DayOfWeek;
 notNaN = ~isnan(delays);
 day = day(notNaN);
 delays = delays(notNaN);

 % find the unique days in this chunk
 [intermKeys,~,idx] = unique(day, 'stable');

 % group delays by idx and apply @grpstatsfun function to each group
 intermVals = accumarray(idx,delays,size(intermKeys),@countsum);
 addmulti(intermKVStore,intermKeys,intermVals);

 function out = countsum(x)
 n = length(x); % count
 s = sum(x); % mean
 out = {[n, s]};
 end
end
%---
function meanArrivalDelayByDayReducer(intermKey, intermValIter, outKVStore)
 n = 0;
 s = 0;

 % get all sets of intermediate results
 while hasnext(intermValIter)
 intermValue = getnext(intermValIter);
 n = n + intermValue(1);
 s = s + intermValue(2);
 end

 % accumulate the sum and count
 mean = s/n;
 % add results to the output datastore
 add(outKVStore,intermKey,mean);
end
%---

See Also
mapreduce | tabularTextDatastore

 Compute Mean by Group Using MapReduce

12-41

More About
• “Getting Started with MapReduce” on page 12-3
• “Build Effective Algorithms with MapReduce” on page 12-18

12 Large Data

12-42

Create Histograms Using MapReduce
This example shows how to visualize patterns in a large data set without having to load all of the
observations into memory simultaneously. It demonstrates how to compute lower volume summaries
of the data that are sufficient to generate a graphic.

Histograms are a common visualization technique that give an empirical estimate of the probability
density function (pdf) of a variable. Histograms are well-suited to a big data environment, because
they can reduce the size of raw input data to a vector of counts. Each count is the number of
observations that falls within each of a set of contiguous, numeric intervals or bins.

The mapreduce function computes counts separately on multiple blocks of the data. Then
mapreduce sums the counts from all blocks. The map function and reduce function are both
extremely simple in this example. Nevertheless, you can build flexible visualizations with the
summary information that they collect.

Prepare Data

Create a datastore using the airlinesmall.csv data set. This 12-megabyte data set contains 29
columns of flight information for several airline carriers, including arrival and departure times. In this
example, select ArrDelay (flight arrival delay) as the variable of interest.

ds = tabularTextDatastore('airlinesmall.csv', 'TreatAsMissing', 'NA');
ds.SelectedVariableNames = 'ArrDelay';

The datastore treats 'NA' values as missing, and replaces the missing values with NaN values by
default. Additionally, the SelectedVariableNames property allows you to work with only the
selected variable of interest, which you can verify using preview.

preview(ds)

ans=8×1 table
 ArrDelay

 8
 8
 21
 13
 4
 59
 3
 11

Run MapReduce

The mapreduce function requires a map function and a reduce function as inputs. The mapper
receives blocks of data and outputs intermediate results. The reducer reads the intermediate results
and produces a final result.

In this example, the mapper collects the counts of flights with various amounts of arrival delay by
accumulating the arrival delays into bins. The bins are defined by the fourth input argument to the
map function, edges.

Display the map function file.

 Create Histograms Using MapReduce

12-43

function visualizationMapper(data, ~, intermKVStore, edges)
 % Count how many flights have arrival delay in each interval specified by
 % the EDGES vector, and add these counts to INTERMKVSTORE.
 counts = histc(data.ArrDelay, edges);
 add(intermKVStore, 'Null', counts);
end

The bin size of the histogram is important. Bins that are too wide can obscure important details in the
data set. Bins that are too narrow can lead to a noisy histogram. When working with very large data
sets, it is best to avoid making multiple passes over the data to try out different bin widths. A simple
way to avoid making multiple passes is to collect counts with bins that are narrow. Then, to get wider
bins, you can aggregate adjacent bin counts without reprocessing the raw data. The flight arrival
delays are reported in 1-minute increments, so define 1-minute bins from -60 minutes to 599 minutes.

edges = -60:599;

Create an anonymous function to configure the map function to use the bin edges. The anonymous
function allows you to specialize the map function by specifying a particular value for its fourth input
argument. Then, you can call the map function via the anonymous function, using only the three input
arguments that the mapreduce function expects.

ourVisualizationMapper = ...
 @(data, info, intermKVstore) visualizationMapper(data, info, intermKVstore, edges);

Display the reduce function file. The reducer sums the counts stored by the mapper.

function visualizationReducer(~, intermValList, outKVStore)
 if hasnext(intermValList)
 outVal = getnext(intermValList);
 else
 outVal = [];
 end
 while hasnext(intermValList)
 outVal = outVal + getnext(intermValList);
 end
 add(outKVStore, 'Null', outVal);
end

Use mapreduce to apply the map and reduce functions to the datastore, ds.

result = mapreduce(ds, ourVisualizationMapper, @visualizationReducer);

* MAPREDUCE PROGRESS *

Map 0% Reduce 0%
Map 16% Reduce 0%
Map 32% Reduce 0%
Map 48% Reduce 0%
Map 65% Reduce 0%
Map 81% Reduce 0%
Map 97% Reduce 0%
Map 100% Reduce 0%
Map 100% Reduce 100%

mapreduce returns an output datastore, result, with files in the current folder.

12 Large Data

12-44

Organize Results

Read the final bin count results from the output datastore.

r = readall(result);
counts = r.Value{1};

Visualize Results

Plot the raw bin counts using the whole range of the data (apart from a few outliers excluded by the
mapper).

bar(edges, counts, 'hist');
title('Distribution of Flight Delay')
xlabel('Arrival Delay (min)')
ylabel('Flight Counts')

The histogram has long tails. Look at a restricted bin range to better visualize the delay distribution
of the majority of flights. Zooming in a bit reveals there is a reporting artifact; it is common to round
delays to 5-minute increments.

xlim([-50,50]);
grid on
grid minor

 Create Histograms Using MapReduce

12-45

Smooth the counts with a moving average filter to remove the 5-minute recording artifact.

smoothCounts = filter((1/5)*ones(1,5), 1, counts);
figure
bar(edges, smoothCounts, 'hist')
xlim([-50,50]);
title('Distribution of Flight Delay')
xlabel('Arrival Delay (min)')
ylabel('Flight Counts')
grid on
grid minor

12 Large Data

12-46

To give the graphic a better balance, do not display the top 1% of most-delayed flights. You can tailor
the visualization in many ways without reprocessing the complete data set, assuming that you
collected the appropriate information during the full pass through the data.

empiricalCDF = cumsum(counts);
empiricalCDF = empiricalCDF / empiricalCDF(end);
quartile99 = find(empiricalCDF>0.99, 1, 'first');
low99 = 1:quartile99;

figure
empiricalPDF = smoothCounts(low99) / sum(smoothCounts);
bar(edges(low99), empiricalPDF, 'hist');

xlim([-60,edges(quartile99)]);
ylim([0, max(empiricalPDF)*1.05]);
title('Distribution of Flight Delay')
xlabel('Arrival Delay (min)')
ylabel('Probability Density')

 Create Histograms Using MapReduce

12-47

Local Functions

Listed here are the map and reduce functions that mapreduce applies to the data.

function visualizationMapper(data, ~, intermKVStore, edges)
 % Count how many flights have arrival delay in each interval specified by
 % the EDGES vector, and add these counts to INTERMKVSTORE.
 counts = histc(data.ArrDelay, edges);
 add(intermKVStore, 'Null', counts);
end
%--
function visualizationReducer(~, intermValList, outKVStore)
 if hasnext(intermValList)
 outVal = getnext(intermValList);
 else
 outVal = [];
 end
 while hasnext(intermValList)
 outVal = outVal + getnext(intermValList);
 end
 add(outKVStore, 'Null', outVal);
end
%--

See Also
mapreduce | tabularTextDatastore

12 Large Data

12-48

More About
• “Getting Started with MapReduce” on page 12-3
• “Build Effective Algorithms with MapReduce” on page 12-18

 Create Histograms Using MapReduce

12-49

Simple Data Subsetting Using MapReduce
This example shows how to extract a subset of a large data set.

There are two aspects of subsetting, or performing a query. One is selecting a subset of the variables
(columns) in the data set. The other is selecting a subset of the observations, or rows.

In this example, the selection of variables takes place in the definition of the datastore. (The map
function could perform a further sub-selection of variables, but that is not within the scope of this
example). In this example, the role of the map function is to perform the selection of observations.
The role of the reduce function is to concatenate the subsetted records extracted by each call to the
map function. This approach assumes that the data set can fit in memory after the Map phase.

Prepare Data

Create a datastore using the airlinesmall.csv data set. This 12-megabyte data set contains 29
columns of flight information for several airline carriers, including arrival and departure times. This
example uses 15 variables out of the 29 variables available in the data.

ds = tabularTextDatastore('airlinesmall.csv', 'TreatAsMissing', 'NA');
ds.SelectedVariableNames = ds.VariableNames([1 2 5 9 12 13 15 16 17 ...
 18 20 21 25 26 27]);
ds.SelectedVariableNames

ans = 1x15 cell
 Columns 1 through 4

 {'Year'} {'Month'} {'DepTime'} {'UniqueCarrier'}

 Columns 5 through 8

 {'ActualElapsedTime'} {'CRSElapsedTime'} {'ArrDelay'} {'DepDelay'}

 Columns 9 through 13

 {'Origin'} {'Dest'} {'TaxiIn'} {'TaxiOut'} {'CarrierDelay'}

 Columns 14 through 15

 {'WeatherDelay'} {'NASDelay'}

The datastore treats 'NA' values as missing, and replaces the missing values with NaN values by
default. Additionally, the SelectedVariableNames property allows you to work with only the
specified variables of interest, which you can verify using preview.

preview(ds)

ans=8×15 table
 Year Month DepTime UniqueCarrier ActualElapsedTime CRSElapsedTime ArrDelay DepDelay Origin Dest TaxiIn TaxiOut CarrierDelay WeatherDelay NASDelay
 ____ _____ _______ _____________ _________________ ______________ ________ ________ _______ _______ ______ _______ ____________ ____________ ________

 1987 10 642 {'PS'} 53 57 8 12 {'LAX'} {'SJC'} NaN NaN NaN NaN NaN
 1987 10 1021 {'PS'} 63 56 8 1 {'SJC'} {'BUR'} NaN NaN NaN NaN NaN
 1987 10 2055 {'PS'} 83 82 21 20 {'SAN'} {'SMF'} NaN NaN NaN NaN NaN
 1987 10 1332 {'PS'} 59 58 13 12 {'BUR'} {'SJC'} NaN NaN NaN NaN NaN
 1987 10 629 {'PS'} 77 72 4 -1 {'SMF'} {'LAX'} NaN NaN NaN NaN NaN

12 Large Data

12-50

 1987 10 1446 {'PS'} 61 65 59 63 {'LAX'} {'SJC'} NaN NaN NaN NaN NaN
 1987 10 928 {'PS'} 84 79 3 -2 {'SAN'} {'SFO'} NaN NaN NaN NaN NaN
 1987 10 859 {'PS'} 155 143 11 -1 {'SEA'} {'LAX'} NaN NaN NaN NaN NaN

Run MapReduce

The mapreduce function requires a map function and a reduce function as inputs. The mapper
receives blocks of data and outputs intermediate results. The reducer reads the intermediate results
and produces a final result.

In this example, the mapper receives a table with the variables described by the
SelectedVariableNames property in the datastore. Then, the mapper extracts flights that had a
high amount of delay after pushback from the gate. Specifically, it identifies flights with a duration
exceeding 2.5 times the length of the scheduled duration. The mapper ignores flights prior to 1995,
because some of the variables of interest for this example were not collected before that year.

Display the map function file.

function subsettingMapper(data, ~, intermKVStore)
 % Select flights from 1995 and later that had exceptionally long
 % elapsed flight times (including both time on the tarmac and time in
 % the air).
 idx = data.Year > 1994 & (data.ActualElapsedTime - data.CRSElapsedTime)...
 > 1.50 * data.CRSElapsedTime;
 intermVal = data(idx,:);

 add(intermKVStore,'Null',intermVal);
end

The reducer receives the subsetted observations obtained from the mapper and simply concatenates
them into a single table. The reducer returns one key (which is relatively meaningless) and one value
(the concatenated table).

Display the reduce function file.

function subsettingReducer(~, intermValList, outKVStore)
 % get all intermediate results from the list
 outVal = {};

 while hasnext(intermValList)
 outVal = [outVal; getnext(intermValList)];
 end
 % Note that this approach assumes the concatenated intermediate values (the
 % subset of the whole data) fit in memory.

 add(outKVStore, 'Null', outVal);
end

Use mapreduce to apply the map and reduce functions to the datastore, ds.

result = mapreduce(ds, @subsettingMapper, @subsettingReducer);

* MAPREDUCE PROGRESS *

Map 0% Reduce 0%
Map 16% Reduce 0%

 Simple Data Subsetting Using MapReduce

12-51

Map 32% Reduce 0%
Map 48% Reduce 0%
Map 65% Reduce 0%
Map 81% Reduce 0%
Map 97% Reduce 0%
Map 100% Reduce 0%
Map 100% Reduce 100%

mapreduce returns an output datastore, result, with files in the current folder.

Display Results

Look for patterns in the first 10 variables that were pulled from the data set. These variables identify
the airline, the destination, and the arrival airports, as well as some basic delay information.

r = readall(result);
tbl = r.Value{1};
tbl(:,1:10)

ans=37×10 table
 Year Month DepTime UniqueCarrier ActualElapsedTime CRSElapsedTime ArrDelay DepDelay Origin Dest
 ____ _____ _______ _____________ _________________ ______________ ________ ________ _______ _______

 1995 6 1601 {'US'} 162 58 118 14 {'BWI'} {'PIT'}
 1996 6 1834 {'CO'} 241 75 220 54 {'IAD'} {'EWR'}
 1997 1 730 {'DL'} 110 43 137 70 {'ATL'} {'GSP'}
 1997 4 1715 {'UA'} 152 57 243 148 {'IND'} {'ORD'}
 1997 9 2232 {'NW'} 143 50 115 22 {'DTW'} {'CMH'}
 1997 10 1419 {'CO'} 196 58 157 19 {'DFW'} {'IAH'}
 1998 3 2156 {'DL'} 139 49 146 56 {'TYS'} {'ATL'}
 1998 10 1803 {'NW'} 291 81 213 3 {'MSP'} {'ORD'}
 2000 5 830 {'WN'} 140 55 85 0 {'DAL'} {'HOU'}
 2000 8 1630 {'CO'} 357 123 244 10 {'EWR'} {'CLT'}
 2002 6 1759 {'US'} 260 67 192 -1 {'LGA'} {'BOS'}
 2003 3 1214 {'XE'} 214 84 124 -6 {'GPT'} {'IAH'}
 2003 3 604 {'XE'} 175 60 114 -1 {'LFT'} {'IAH'}
 2003 4 1556 {'MQ'} 142 52 182 92 {'PIA'} {'ORD'}
 2003 5 1954 {'US'} 127 48 78 -1 {'RDU'} {'CLT'}
 2003 7 1250 {'FL'} 261 95 166 0 {'ATL'} {'IAD'}
 ⋮

Looking at the first record, a U.S. Air flight departed the gate 14 minutes after its scheduled
departure time and arrived 118 minutes late. The flight experienced a delay of 104 minutes after
pushback from the gate which is the difference between ActualElapsedTime and
CRSElapsedTime.

There is one anomalous record. In February of 2006, a JetBlue flight had a departure time of 3:24
a.m. and an elapsed flight time of 1650 minutes, but an arrival delay of only 415 minutes. This might
be a data entry error.

Otherwise, there are no clear cut patterns concerning when and where these exceptionally delayed
flights occur. No airline, time of year, time of day, or single airport dominates. Some intuitive
patterns, such as O'Hare (ORD) in the winter months, are certainly present.

12 Large Data

12-52

Delay Patterns

Beginning in 1995, the airline system performance data began including measurements of how much
delay took place in the taxi phases of a flight. Then, in 2003, the data also began to include certain
causes of delay.

Examine these two variables in closer detail.

tbl(:,[1,7,8,11:end])

ans=37×8 table
 Year ArrDelay DepDelay TaxiIn TaxiOut CarrierDelay WeatherDelay NASDelay
 ____ ________ ________ ______ _______ ____________ ____________ ________

 1995 118 14 7 101 NaN NaN NaN
 1996 220 54 12 180 NaN NaN NaN
 1997 137 70 2 12 NaN NaN NaN
 1997 243 148 4 38 NaN NaN NaN
 1997 115 22 4 98 NaN NaN NaN
 1997 157 19 6 95 NaN NaN NaN
 1998 146 56 9 47 NaN NaN NaN
 1998 213 3 11 205 NaN NaN NaN
 2000 85 0 5 51 NaN NaN NaN
 2000 244 10 4 273 NaN NaN NaN
 2002 192 -1 6 217 NaN NaN NaN
 2003 124 -6 13 131 NaN NaN NaN
 2003 114 -1 8 106 NaN NaN NaN
 2003 182 92 9 106 NaN NaN NaN
 2003 78 -1 5 90 NaN NaN NaN
 2003 166 0 11 170 0 0 166
 ⋮

For these exceptionally delayed flights, the great majority of delay occurs during taxi out, on the
tarmac. Moreover, the major cause of the delay is NASDelay. NAS delays are holds imposed by the
national aviation authorities on departures headed for an airport that is forecast to be unable to
handle all scheduled arrivals at the time the flight is scheduled to arrive. NAS delay programs in
effect at any given time are posted at https://www.fly.faa.gov/ois/.

Preferably, when NAS delays are imposed, boarding of the aircraft is simply delayed. Such a delay
would show up as a departure delay. However, for most of the flights selected for this example, the
delays took place largely after departure from the gate, leading to a taxi delay.

Rerun MapReduce

The previous map function had the subsetting criteria hard-wired in the function file. A new map
function would have to be written for any new query, such as flights departing San Francisco on a
given day.

A generic mapper can be more adaptive by separating out the subsetting criteria from the map
function definition and using an anonymous function to configure the mapper for each query. This
generic mapper uses a fourth input argument that supplies the desired query variable.

Display the generic map function file.

function subsettingMapperGeneric(data, ~, intermKVStore, subsetter)
 intermKey = 'Null';

 Simple Data Subsetting Using MapReduce

12-53

https://www.fly.faa.gov/ois/

 intermVal = data(subsetter(data), :);
 add(intermKVStore,intermKey,intermVal);
end

Create an anonymous function that performs the same selection of rows that is hard-coded in
subsettingMapper.

inFlightDelay150percent = ...
 @(data) data.Year > 1994 & ...
 (data.ActualElapsedTime-data.CRSElapsedTime) > 1.50*data.CRSElapsedTime;

Since the mapreduce function requires the map and reduce functions to accept exactly three inputs,
use another anonymous function to specify the fourth input to the mapper,
subsettingMapperGeneric. Subsequently, you can use this anonymous function to call
subsettingMapperGeneric using only three arguments (the fourth is implicit).

configuredMapper = ...
 @(data, info, intermKVStore) subsettingMapperGeneric(data, info, ...
 intermKVStore, inFlightDelay150percent);

Use mapreduce to apply the generic map function to the input datastore.

result2 = mapreduce(ds, configuredMapper, @subsettingReducer);

* MAPREDUCE PROGRESS *

Map 0% Reduce 0%
Map 16% Reduce 0%
Map 32% Reduce 0%
Map 48% Reduce 0%
Map 65% Reduce 0%
Map 81% Reduce 0%
Map 97% Reduce 0%
Map 100% Reduce 0%
Map 100% Reduce 100%

mapreduce returns an output datastore, result2, with files in the current folder.

Verify Results

Confirm that the generic mapper gets the same result as with the hard-wired subsetting logic.

r2 = readall(result2);
tbl2 = r2.Value{1};

if isequaln(tbl, tbl2)
 disp('Same results with the configurable mapper.')
else
 disp('Oops, back to the drawing board.')
end

Same results with the configurable mapper.

Local Functions

Listed here are the map and reduce functions that mapreduce applies to the data.

function subsettingMapper(data, ~, intermKVStore)
 % Select flights from 1995 and later that had exceptionally long

12 Large Data

12-54

 % elapsed flight times (including both time on the tarmac and time in
 % the air).
 idx = data.Year > 1994 & (data.ActualElapsedTime - data.CRSElapsedTime)...
 > 1.50 * data.CRSElapsedTime;
 intermVal = data(idx,:);

 add(intermKVStore,'Null',intermVal);
end
%---
function subsettingReducer(~, intermValList, outKVStore)
 % get all intermediate results from the list
 outVal = {};

 while hasnext(intermValList)
 outVal = [outVal; getnext(intermValList)];
 end
 % Note that this approach assumes the concatenated intermediate values (the
 % subset of the whole data) fit in memory.

 add(outKVStore, 'Null', outVal);
end
%---
function subsettingMapperGeneric(data, ~, intermKVStore, subsetter)
 intermKey = 'Null';
 intermVal = data(subsetter(data), :);
 add(intermKVStore,intermKey,intermVal);
end
%---

See Also
mapreduce | tabularTextDatastore

More About
• “Getting Started with MapReduce” on page 12-3
• “Build Effective Algorithms with MapReduce” on page 12-18

 Simple Data Subsetting Using MapReduce

12-55

Using MapReduce to Compute Covariance and Related
Quantities

This example shows how to compute the mean and covariance for several variables in a large data set
using mapreduce. It then uses the covariance to perform several follow-up calculations that do not
require another iteration over the entire data set.

Prepare Data

Create a datastore using the airlinesmall.csv data set. This 12-megabyte data set contains 29
columns of flight information for several airline carriers, including arrival and departure times. In this
example, select ActualElapsedTime (total flight time), Distance (total flight distance), DepDelay
(flight departure delay), and ArrDelay (flight arrival delay) as the variables of interest.

ds = tabularTextDatastore('airlinesmall.csv', 'TreatAsMissing', 'NA');
ds.SelectedVariableNames = {'ActualElapsedTime', 'Distance', ...
 'DepDelay', 'ArrDelay'};

The datastore treats 'NA' values as missing, and replaces the missing values with NaN values by
default. Additionally, the SelectedVariableNames property allows you to work with only the
selected variables of interest, which you can verify using preview.

preview(ds)

ans=8×4 table
 ActualElapsedTime Distance DepDelay ArrDelay
 _________________ ________ ________ ________

 53 308 12 8
 63 296 1 8
 83 480 20 21
 59 296 12 13
 77 373 -1 4
 61 308 63 59
 84 447 -2 3
 155 954 -1 11

Run MapReduce

The mapreduce function requires a map function and a reduce function as inputs. The mapper
receives blocks of data and outputs intermediate results. The reducer reads the intermediate results
and produces a final result.

In this example, the mapper computes the count, mean, and covariance for the variables in each
block of data in the datastore, ds. Then, the mapper stores the computed values for each block as an
intermediate key-value pair consisting of a single key with a cell array containing the three computed
values.

Display the map function file.

function covarianceMapper(t,~,intermKVStore)
 % Get data from input table and remove any rows with missing values
 x = t{:,:};
 x = x(~any(isnan(x),2),:);

12 Large Data

12-56

 % Compute and save the count, mean, and covariance
 n = size(x,1);
 m = mean(x,1);
 c = cov(x,1);

 % Store values as a single item in the intermediate key/value store
 add(intermKVStore,'key',{n m c})
end

The reducer combines the intermediate results for each block to obtain the count, mean, and
covariance for each variable of interest in the entire data set. The reducer stores the final key-value
pairs for the keys 'count', 'mean', and 'cov' with the corresponding values for each variable.

Display the reduce function file.

function covarianceReducer(~,intermValIter,outKVStore)
 % We will combine results computed in the mapper for different chunks of
 % the data, updating the count, mean, and covariance each time we add a new
 % chunk.

 % First, initialize everything to zero (scalar 0 is okay)
 n1 = 0; % no rows so far
 m1 = 0; % mean so far
 c1 = 0; % covariance so far

 while hasnext(intermValIter)
 % Get the next chunk, and extract the count, mean, and covariance
 t = getnext(intermValIter);
 n2 = t{1};
 m2 = t{2};
 c2 = t{3};

 % Use weighting formulas to update the values so far
 n = n1+n2; % new count
 m = (n1*m1 + n2*m2) / n; % new mean

 % New covariance is a weighted combination of the two covariance, plus
 % additional terms that relate to the difference in means
 c1 = (n1*c1 + n2*c2 + n1*(m1-m)'*(m1-m) + n2*(m2-m)'*(m2-m))/ n;

 % Store the new mean and count for the next iteration
 m1 = m;
 n1 = n;
 end

 % Save results in the output key/value store
 add(outKVStore,'count',n1);
 add(outKVStore,'mean',m1);
 add(outKVStore,'cov',c1);
end

Use mapreduce to apply the map and reduce functions to the datastore, ds.

outds = mapreduce(ds, @covarianceMapper, @covarianceReducer);

* MAPREDUCE PROGRESS *

 Using MapReduce to Compute Covariance and Related Quantities

12-57

Map 0% Reduce 0%
Map 16% Reduce 0%
Map 32% Reduce 0%
Map 48% Reduce 0%
Map 65% Reduce 0%
Map 81% Reduce 0%
Map 97% Reduce 0%
Map 100% Reduce 0%
Map 100% Reduce 100%

mapreduce returns a datastore, outds, with files in the current folder.

View the results of the mapreduce call by using the readall function on the output datastore.

results = readall(outds)

results=3×2 table
 Key Value
 _________ ____________

 {'count'} {[120664]}
 {'mean' } {1x4 double}
 {'cov' } {4x4 double}

Count = results.Value{1};
MeanVal = results.Value{2};
Covariance = results.Value{3};

Compute Correlation Matrix

The covariance, mean, and count values are useful to perform further calculations. Compute a
correlation matrix by finding the standard deviations and normalizing them to correlation form.

s = sqrt(diag(Covariance));
Correlation = Covariance ./ (s*s')

Correlation = 4×4

 1.0000 0.9666 0.0278 0.0902
 0.9666 1.0000 0.0216 0.0013
 0.0278 0.0216 1.0000 0.8748
 0.0902 0.0013 0.8748 1.0000

The elapsed time (first column) and distance (second column) are highly correlated, since
Correlation(2,1) = 0.9666. The departure delay (third column) and arrival delay (fourth
column) are also highly correlated, since Correlation(4,3) = 0.8748.

Compute Regression Coefficients

Compute some regression coefficients to predict the arrival delay, ArrDelay, using the other three
variables as predictors.

slopes = Covariance(1:3,1:3)\Covariance(1:3,4);
intercept = MeanVal(4) - MeanVal(1:3)*slopes;
b = table([intercept; slopes], 'VariableNames', {'Estimate'}, ...
 'RowNames', {'Intercept','ActualElapsedTime','Distance','DepDelay'})

12 Large Data

12-58

b=4×1 table
 Estimate

 Intercept -19.912
 ActualElapsedTime 0.56278
 Distance -0.068721
 DepDelay 0.94689

Perform PCA

Use svd to perform PCA (principal components analysis). PCA is a technique for finding a lower
dimensional summary of a data set. The following calculation is a simplified version of PCA, but more
options are available from the pca and pcacov functions in Statistics and Machine Learning
Toolbox™.

You can carry out PCA using either the covariance or correlation. In this case, use the correlation
since the difference in scale of the variables is large. The first two components capture most of the
variance.

[~,latent,pcacoef] = svd(Correlation);
latent = diag(latent)

latent = 4×1

 2.0052
 1.8376
 0.1407
 0.0164

Display the coefficient matrix. Each column of the coefficients matrix describes how one component is
defined as a linear combination of the standardized original variables. The first component is mostly
an average of the first two variables, with some additional contribution from the other variables.
Similarly, the second component is mostly an average of the last two variables.

pcacoef

pcacoef = 4×4

 -0.6291 0.3222 -0.2444 -0.6638
 -0.6125 0.3548 0.2591 0.6572
 -0.3313 -0.6244 0.6673 -0.2348
 -0.3455 -0.6168 -0.6541 0.2689

Local Functions

Listed here are the map and reduce functions that mapreduce applies to the data.

function covarianceMapper(t,~,intermKVStore)
 % Get data from input table and remove any rows with missing values
 x = t{:,:};
 x = x(~any(isnan(x),2),:);

 % Compute and save the count, mean, and covariance
 n = size(x,1);

 Using MapReduce to Compute Covariance and Related Quantities

12-59

 m = mean(x,1);
 c = cov(x,1);

 % Store values as a single item in the intermediate key/value store
 add(intermKVStore,'key',{n m c})
end
%--
function covarianceReducer(~,intermValIter,outKVStore)
 % We will combine results computed in the mapper for different chunks of
 % the data, updating the count, mean, and covariance each time we add a new
 % chunk.

 % First, initialize everything to zero (scalar 0 is okay)
 n1 = 0; % no rows so far
 m1 = 0; % mean so far
 c1 = 0; % covariance so far

 while hasnext(intermValIter)
 % Get the next chunk, and extract the count, mean, and covariance
 t = getnext(intermValIter);
 n2 = t{1};
 m2 = t{2};
 c2 = t{3};

 % Use weighting formulas to update the values so far
 n = n1+n2; % new count
 m = (n1*m1 + n2*m2) / n; % new mean

 % New covariance is a weighted combination of the two covariance, plus
 % additional terms that relate to the difference in means
 c1 = (n1*c1 + n2*c2 + n1*(m1-m)'*(m1-m) + n2*(m2-m)'*(m2-m))/ n;

 % Store the new mean and count for the next iteration
 m1 = m;
 n1 = n;
 end

 % Save results in the output key/value store
 add(outKVStore,'count',n1);
 add(outKVStore,'mean',m1);
 add(outKVStore,'cov',c1);
end
%--

See Also
mapreduce | tabularTextDatastore

More About
• “Getting Started with MapReduce” on page 12-3
• “Build Effective Algorithms with MapReduce” on page 12-18

12 Large Data

12-60

Compute Summary Statistics by Group Using MapReduce
This example shows how to compute summary statistics organized by group using mapreduce. It
demonstrates the use of an anonymous function to pass an extra grouping parameter to a
parameterized map function. This parameterization allows you to quickly recalculate the statistics
using a different grouping variable.

Prepare Data

Create a datastore using the airlinesmall.csv data set. This 12-megabyte data set contains 29
columns of flight information for several airline carriers, including arrival and departure times. For
this example, select Month, UniqueCarrier (airline carrier ID), and ArrDelay (flight arrival delay)
as the variables of interest.

ds = tabularTextDatastore('airlinesmall.csv', 'TreatAsMissing', 'NA');
ds.SelectedVariableNames = {'Month', 'UniqueCarrier', 'ArrDelay'};

The datastore treats 'NA' values as missing, and replaces the missing values with NaN values by
default. Additionally, the SelectedVariableNames property allows you to work with only the
selected variables of interest, which you can verify using preview.

preview(ds)

ans=8×3 table
 Month UniqueCarrier ArrDelay
 _____ _____________ ________

 10 {'PS'} 8
 10 {'PS'} 8
 10 {'PS'} 21
 10 {'PS'} 13
 10 {'PS'} 4
 10 {'PS'} 59
 10 {'PS'} 3
 10 {'PS'} 11

Run MapReduce

The mapreduce function requires a map function and a reduce function as inputs. The mapper
receives blocks of data and outputs intermediate results. The reducer reads the intermediate results
and produces a final result.

In this example, the mapper computes the grouped statistics for each block of data and stores the
statistics as intermediate key-value pairs. Each intermediate key-value pair has a key for the group
level and a cell array of values with the corresponding statistics.

This map function accepts four input arguments, whereas the mapreduce function requires the map
function to accept exactly three input arguments. The call to mapreduce (below) shows how to pass
in this extra parameter.

Display the map function file.

function statsByGroupMapper(data, ~, intermKVStore, groupVarName)
 % Data is a n-by-3 table. Remove missing values first
 delays = data.ArrDelay;

 Compute Summary Statistics by Group Using MapReduce

12-61

 groups = data.(groupVarName);
 notNaN =~isnan(delays);
 groups = groups(notNaN);
 delays = delays(notNaN);

 % Find the unique group levels in this chunk
 [intermKeys,~,idx] = unique(groups, 'stable');

 % Group delays by idx and apply @grpstatsfun function to each group
 intermVals = accumarray(idx,delays,size(intermKeys),@grpstatsfun);
 addmulti(intermKVStore,intermKeys,intermVals);

 function out = grpstatsfun(x)
 n = length(x); % count
 m = sum(x)/n; % mean
 v = sum((x-m).^2)/n; % variance
 s = sum((x-m).^3)/n; % skewness without normalization
 k = sum((x-m).^4)/n; % kurtosis without normalization
 out = {[n, m, v, s, k]};
 end
end

After the Map phase, mapreduce groups the intermediate key-value pairs by unique key (in this case,
the airline carrier ID), so each call to the reduce function works on the values associated with one
airline. The reducer receives a list of the intermediate statistics for the airline specified by the input
key (intermKey) and combines the statistics into separate vectors: n, m, v, s, and k. Then, the
reducer uses these vectors to calculate the count, mean, variance, skewness, and kurtosis for a single
airline. The final key is the airline carrier code, and the associated values are stored in a structure
with five fields.

Display the reduce function file.

function statsByGroupReducer(intermKey, intermValIter, outKVStore)
 n = [];
 m = [];
 v = [];
 s = [];
 k = [];

 % Get all sets of intermediate statistics
 while hasnext(intermValIter)
 value = getnext(intermValIter);
 n = [n; value(1)];
 m = [m; value(2)];
 v = [v; value(3)];
 s = [s; value(4)];
 k = [k; value(5)];
 end
 % Note that this approach assumes the concatenated intermediate values fit
 % in memory. Refer to the reducer function, covarianceReducer, of the
 % CovarianceMapReduceExample for an alternative pairwise reduction approach

 % Combine the intermediate results
 count = sum(n);
 meanVal = sum(n.*m)/count;
 d = m - meanVal;
 variance = (sum(n.*v) + sum(n.*d.^2))/count;

12 Large Data

12-62

 skewnessVal = (sum(n.*s) + sum(n.*d.*(3*v + d.^2)))./(count*variance^(1.5));
 kurtosisVal = (sum(n.*k) + sum(n.*d.*(4*s + 6.*v.*d +d.^3)))./(count*variance^2);

 outValue = struct('Count',count, 'Mean',meanVal, 'Variance',variance,...
 'Skewness',skewnessVal, 'Kurtosis',kurtosisVal);

 % Add results to the output datastore
 add(outKVStore,intermKey,outValue);
end

Use mapreduce to apply the map and reduce functions to the datastore, ds. Since the parameterized
map function accepts four inputs, use an anonymous function to pass in the airline carrier IDs as the
fourth input.

outds1 = mapreduce(ds, ...
 @(data,info,kvs)statsByGroupMapper(data,info,kvs,'UniqueCarrier'), ...
 @statsByGroupReducer);

* MAPREDUCE PROGRESS *

Map 0% Reduce 0%
Map 16% Reduce 0%
Map 32% Reduce 0%
Map 48% Reduce 0%
Map 65% Reduce 0%
Map 81% Reduce 0%
Map 97% Reduce 0%
Map 100% Reduce 0%
Map 100% Reduce 10%
Map 100% Reduce 21%
Map 100% Reduce 31%
Map 100% Reduce 41%
Map 100% Reduce 52%
Map 100% Reduce 62%
Map 100% Reduce 72%
Map 100% Reduce 83%
Map 100% Reduce 93%
Map 100% Reduce 100%

mapreduce returns a datastore, outds1, with files in the current folder.

Read the final results from the output datastore.

r1 = readall(outds1)

r1=29×2 table
 Key Value
 __________ ____________

 {'PS' } {1x1 struct}
 {'TW' } {1x1 struct}
 {'UA' } {1x1 struct}
 {'WN' } {1x1 struct}
 {'EA' } {1x1 struct}
 {'HP' } {1x1 struct}
 {'NW' } {1x1 struct}
 {'PA (1)'} {1x1 struct}

 Compute Summary Statistics by Group Using MapReduce

12-63

 {'PI' } {1x1 struct}
 {'CO' } {1x1 struct}
 {'DL' } {1x1 struct}
 {'AA' } {1x1 struct}
 {'US' } {1x1 struct}
 {'AS' } {1x1 struct}
 {'ML (1)'} {1x1 struct}
 {'AQ' } {1x1 struct}
 ⋮

Organize Results

To organize the results better, convert the structure containing the statistics into a table and use the
carrier IDs as the row names. mapreduce returns the key-value pairs in the same order as they were
added by the reduce function, so sort the table by carrier ID.

statsByCarrier = struct2table(cell2mat(r1.Value), 'RowNames', r1.Key);
statsByCarrier = sortrows(statsByCarrier, 'RowNames')

statsByCarrier=29×5 table
 Count Mean Variance Skewness Kurtosis
 _____ _______ ________ ________ ________

 9E 507 5.3669 1889.5 6.2676 61.706
 AA 14578 6.9598 1123 6.0321 93.085
 AQ 153 1.0065 230.02 3.9905 28.383
 AS 2826 8.0771 717 3.6547 24.083
 B6 793 11.936 2087.4 4.0072 27.45
 CO 7999 7.048 1053.8 4.6601 41.038
 DH 673 7.575 1491.7 2.9929 15.461
 DL 16284 7.4971 697.48 4.4746 41.115
 EA 875 8.2434 1221.3 5.2955 43.518
 EV 1655 10.028 1325.4 2.9347 14.878
 F9 332 8.4849 1138.6 4.2983 30.742
 FL 1248 9.5144 1360.4 3.6277 21.866
 HA 271 -1.5387 323.27 8.4245 109.63
 HP 3597 7.5897 744.51 5.2534 50.004
 ML (1) 69 0.15942 169.32 2.8354 16.559
 MQ 3805 8.8591 1530.5 7.054 105.51
 ⋮

Change Grouping Parameter

The use of an anonymous function to pass in the grouping variable allows you to quickly recalculate
the statistics with a different grouping.

For this example, recalculate the statistics and group the results by Month, instead of by the carrier
IDs, by simply passing the Month variable into the anonymous function.

outds2 = mapreduce(ds, ...
 @(data,info,kvs)statsByGroupMapper(data,info,kvs,'Month'), ...
 @statsByGroupReducer);

* MAPREDUCE PROGRESS *

12 Large Data

12-64

Map 0% Reduce 0%
Map 16% Reduce 0%
Map 32% Reduce 0%
Map 48% Reduce 0%
Map 65% Reduce 0%
Map 81% Reduce 0%
Map 97% Reduce 0%
Map 100% Reduce 0%
Map 100% Reduce 17%
Map 100% Reduce 33%
Map 100% Reduce 50%
Map 100% Reduce 67%
Map 100% Reduce 83%
Map 100% Reduce 100%

Read the final results and organize them into a table.

r2 = readall(outds2);
r2 = sortrows(r2,'Key');
statsByMonth = struct2table(cell2mat(r2.Value));
mon = {'Jan','Feb','Mar','Apr','May','Jun', ...
 'Jul','Aug','Sep','Oct','Nov','Dec'};
statsByMonth.Properties.RowNames = mon

statsByMonth=12×5 table
 Count Mean Variance Skewness Kurtosis
 _____ ______ ________ ________ ________

 Jan 9870 8.5954 973.69 4.1142 35.152
 Feb 9160 7.3275 911.14 4.7241 45.03
 Mar 10219 7.5536 976.34 5.1678 63.155
 Apr 9949 6.0081 1077.4 8.9506 170.52
 May 10180 5.2949 737.09 4.0535 30.069
 Jun 10045 10.264 1266.1 4.8777 43.5
 Jul 10340 8.7797 1069.7 5.1428 64.896
 Aug 10470 7.4522 908.64 4.1959 29.66
 Sep 9691 3.6308 664.22 4.6573 38.964
 Oct 10590 4.6059 684.94 5.6407 74.805
 Nov 10071 5.2835 808.65 8.0297 186.68
 Dec 10281 10.571 1087.6 3.8564 28.823

Local Functions

Listed here are the map and reduce functions that mapreduce applies to the data.

function statsByGroupMapper(data, ~, intermKVStore, groupVarName)
 % Data is a n-by-3 table. Remove missing values first
 delays = data.ArrDelay;
 groups = data.(groupVarName);
 notNaN =~isnan(delays);
 groups = groups(notNaN);
 delays = delays(notNaN);

 % Find the unique group levels in this chunk
 [intermKeys,~,idx] = unique(groups, 'stable');

 % Group delays by idx and apply @grpstatsfun function to each group

 Compute Summary Statistics by Group Using MapReduce

12-65

 intermVals = accumarray(idx,delays,size(intermKeys),@grpstatsfun);
 addmulti(intermKVStore,intermKeys,intermVals);

 function out = grpstatsfun(x)
 n = length(x); % count
 m = sum(x)/n; % mean
 v = sum((x-m).^2)/n; % variance
 s = sum((x-m).^3)/n; % skewness without normalization
 k = sum((x-m).^4)/n; % kurtosis without normalization
 out = {[n, m, v, s, k]};
 end
end
%---
function statsByGroupReducer(intermKey, intermValIter, outKVStore)
 n = [];
 m = [];
 v = [];
 s = [];
 k = [];

 % Get all sets of intermediate statistics
 while hasnext(intermValIter)
 value = getnext(intermValIter);
 n = [n; value(1)];
 m = [m; value(2)];
 v = [v; value(3)];
 s = [s; value(4)];
 k = [k; value(5)];
 end
 % Note that this approach assumes the concatenated intermediate values fit
 % in memory. Refer to the reducer function, covarianceReducer, of the
 % CovarianceMapReduceExample for an alternative pairwise reduction approach

 % Combine the intermediate results
 count = sum(n);
 meanVal = sum(n.*m)/count;
 d = m - meanVal;
 variance = (sum(n.*v) + sum(n.*d.^2))/count;
 skewnessVal = (sum(n.*s) + sum(n.*d.*(3*v + d.^2)))./(count*variance^(1.5));
 kurtosisVal = (sum(n.*k) + sum(n.*d.*(4*s + 6.*v.*d +d.^3)))./(count*variance^2);

 outValue = struct('Count',count, 'Mean',meanVal, 'Variance',variance,...
 'Skewness',skewnessVal, 'Kurtosis',kurtosisVal);

 % Add results to the output datastore
 add(outKVStore,intermKey,outValue);
end
%---

See Also
mapreduce | tabularTextDatastore

More About
• “Getting Started with MapReduce” on page 12-3
• “Build Effective Algorithms with MapReduce” on page 12-18

12 Large Data

12-66

Using MapReduce to Fit a Logistic Regression Model
This example shows how to use mapreduce to carry out simple logistic regression using a single
predictor. It demonstrates chaining multiple mapreduce calls to carry out an iterative algorithm.
Since each iteration requires a separate pass through the data, an anonymous function passes
information from one iteration to the next to supply information directly to the mapper.

Prepare Data

Create a datastore using the airlinesmall.csv data set. This 12-megabyte data set contains 29
columns of flight information for several airline carriers, including arrival and departure times. In this
example, the variables of interest are ArrDelay (flight arrival delay) and Distance (total flight
distance).

ds = tabularTextDatastore('airlinesmall.csv', 'TreatAsMissing', 'NA');
ds.SelectedVariableNames = {'ArrDelay', 'Distance'};

The datastore treats 'NA' values as missing, and replaces the missing values with NaN values by
default. Additionally, the SelectedVariableNames property allows you to work with only the
specified variables of interest, which you can verify using preview.

preview(ds)

ans=8×2 table
 ArrDelay Distance
 ________ ________

 8 308
 8 296
 21 480
 13 296
 4 373
 59 308
 3 447
 11 954

Perform Logistic Regression

Logistic regression is a way to model the probability of an event as a function of another variable. In
this example, logistic regression models the probability of a flight being more than 20 minutes late as
a function of the flight distance, in thousands of miles.

To accomplish this logistic regression, the map and reduce functions must collectively perform a
weighted least-squares regression based on the current coefficient values. The mapper computes a
weighted sum of squares and cross product for each block of input data.

Display the map function file.

function logitMapper(b,t,~,intermKVStore)
 % Get data input table and remove any rows with missing values
 y = t.ArrDelay;
 x = t.Distance;
 t = ~isnan(x) & ~isnan(y);
 y = y(t)>20; % late by more than 20 min
 x = x(t)/1000; % distance in thousands of miles

 Using MapReduce to Fit a Logistic Regression Model

12-67

 % Compute the linear combination of the predictors, and the estimated mean
 % probabilities, based on the coefficients from the previous iteration
 if ~isempty(b)
 % Compute xb as the linear combination using the current coefficient
 % values, and derive mean probabilities mu from them
 xb = b(1)+b(2)*x;
 mu = 1./(1+exp(-xb));
 else
 % This is the first iteration. Compute starting values for mu that are
 % 1/4 if y=0 and 3/4 if y=1. Derive xb values from them.
 mu = (y+.5)/2;
 xb = log(mu./(1-mu));
 end

 % To perform weighted least squares, compute a sum of squares and cross
 % products matrix:
 % (X'*W*X) = (X1'*W1*X1) + (X2'*W2*X2) + ... + (Xn'*Wn*Xn),
 % where X = [X1;X2;...;Xn] and W = [W1;W2;...;Wn].
 %
 % The mapper receives one chunk at a time and computes one of the terms on
 % the right hand side. The reducer adds all of the terms to get the
 % quantity on the left hand side, and then performs the regression.
 w = (mu.*(1-mu)); % weights
 z = xb + (y - mu) .* 1./w; % adjusted response

 X = [ones(size(x)),x,z]; % matrix of unweighted data
 wss = X' * bsxfun(@times,w,X); % weighted cross-products X1'*W1*X1

 % Store the results for this part of the data.
 add(intermKVStore, 'key', wss);
end

The reducer computes the regression coefficient estimates from the sums of squares and cross
products.

Display the reduce function file.

function logitReducer(~,intermValIter,outKVStore)
 % We will operate over chunks of the data, updating the count, mean, and
 % covariance each time we add a new chunk
 old = 0;

 % We want to perform weighted least squares. We do this by computing a sum
 % of squares and cross products matrix
 % M = (X'*W*X) = (X1'*W1*X1) + (X2'*W2*X2) + ... + (Xn'*Wn*Xn)
 % where X = X1;X2;...;Xn] and W = [W1;W2;...;Wn].
 %
 % The mapper has computed the terms on the right hand side. Here in the
 % reducer we just add them up.

 while hasnext(intermValIter)
 new = getnext(intermValIter);
 old = old+new;
 end
 M = old; % the value on the left hand side

 % Compute coefficients estimates from M. M is a matrix of sums of squares

12 Large Data

12-68

 % and cross products for [X Y] where X is the design matrix including a
 % constant term and Y is the adjusted response for this iteration. In other
 % words, Y has been included as an additional column of X. First we
 % separate them by extracting the X'*W*X part and the X'*W*Y part.
 XtWX = M(1:end-1,1:end-1);
 XtWY = M(1:end-1,end);

 % Solve the normal equations.
 b = XtWX\XtWY;

 % Return the vector of coefficient estimates.
 add(outKVStore, 'key', b);
end

Run MapReduce

Run mapreduce iteratively by enclosing the calls to mapreduce in a loop. The loop runs until the
convergence criteria are met, with a maximum of five iterations.

% Define the coefficient vector, starting as empty for the first iteration.
b = [];

for iteration = 1:5
 b_old = b;
 iteration

 % Here we will use an anonymous function as our mapper. This function
 % definition includes the value of b computed in the previous
 % iteration.
 mapper = @(t,ignore,intermKVStore) logitMapper(b,t,ignore,intermKVStore);
 result = mapreduce(ds, mapper, @logitReducer, 'Display', 'off');

 tbl = readall(result);
 b = tbl.Value{1}

 % Stop iterating if we have converged.
 if ~isempty(b_old) && ...
 ~any(abs(b-b_old) > 1e-6 * abs(b_old))
 break
 end
end

iteration = 1

b = 2×1

 -1.7674
 0.1209

iteration = 2

b = 2×1

 -1.8327
 0.1807

iteration = 3

 Using MapReduce to Fit a Logistic Regression Model

12-69

b = 2×1

 -1.8331
 0.1806

iteration = 4

b = 2×1

 -1.8331
 0.1806

View Results

Use the resulting regression coefficient estimates to plot a probability curve. This curve shows the
probability of a flight being more than 20 minutes late as a function of the flight distance.

xx = linspace(0,4000);
yy = 1./(1+exp(-b(1)-b(2)*(xx/1000)));
plot(xx,yy);
xlabel('Distance');
ylabel('Prob[Delay>20]')

Local Functions

Listed here are the map and reduce functions that mapreduce applies to the data.

12 Large Data

12-70

function logitMapper(b,t,~,intermKVStore)
 % Get data input table and remove any rows with missing values
 y = t.ArrDelay;
 x = t.Distance;
 t = ~isnan(x) & ~isnan(y);
 y = y(t)>20; % late by more than 20 min
 x = x(t)/1000; % distance in thousands of miles

 % Compute the linear combination of the predictors, and the estimated mean
 % probabilities, based on the coefficients from the previous iteration
 if ~isempty(b)
 % Compute xb as the linear combination using the current coefficient
 % values, and derive mean probabilities mu from them
 xb = b(1)+b(2)*x;
 mu = 1./(1+exp(-xb));
 else
 % This is the first iteration. Compute starting values for mu that are
 % 1/4 if y=0 and 3/4 if y=1. Derive xb values from them.
 mu = (y+.5)/2;
 xb = log(mu./(1-mu));
 end

 % To perform weighted least squares, compute a sum of squares and cross
 % products matrix:
 % (X'*W*X) = (X1'*W1*X1) + (X2'*W2*X2) + ... + (Xn'*Wn*Xn),
 % where X = [X1;X2;...;Xn] and W = [W1;W2;...;Wn].
 %
 % The mapper receives one chunk at a time and computes one of the terms on
 % the right hand side. The reducer adds all of the terms to get the
 % quantity on the left hand side, and then performs the regression.
 w = (mu.*(1-mu)); % weights
 z = xb + (y - mu) .* 1./w; % adjusted response

 X = [ones(size(x)),x,z]; % matrix of unweighted data
 wss = X' * bsxfun(@times,w,X); % weighted cross-products X1'*W1*X1

 % Store the results for this part of the data.
 add(intermKVStore, 'key', wss);
end
%---
function logitReducer(~,intermValIter,outKVStore)
 % We will operate over chunks of the data, updating the count, mean, and
 % covariance each time we add a new chunk
 old = 0;

 % We want to perform weighted least squares. We do this by computing a sum
 % of squares and cross products matrix
 % M = (X'*W*X) = (X1'*W1*X1) + (X2'*W2*X2) + ... + (Xn'*Wn*Xn)
 % where X = X1;X2;...;Xn] and W = [W1;W2;...;Wn].
 %
 % The mapper has computed the terms on the right hand side. Here in the
 % reducer we just add them up.

 while hasnext(intermValIter)
 new = getnext(intermValIter);
 old = old+new;
 end
 M = old; % the value on the left hand side

 Using MapReduce to Fit a Logistic Regression Model

12-71

 % Compute coefficients estimates from M. M is a matrix of sums of squares
 % and cross products for [X Y] where X is the design matrix including a
 % constant term and Y is the adjusted response for this iteration. In other
 % words, Y has been included as an additional column of X. First we
 % separate them by extracting the X'*W*X part and the X'*W*Y part.
 XtWX = M(1:end-1,1:end-1);
 XtWY = M(1:end-1,end);

 % Solve the normal equations.
 b = XtWX\XtWY;

 % Return the vector of coefficient estimates.
 add(outKVStore, 'key', b);
end
%---

See Also
mapreduce | tabularTextDatastore

More About
• “Getting Started with MapReduce” on page 12-3
• “Build Effective Algorithms with MapReduce” on page 12-18

12 Large Data

12-72

Tall Skinny QR (TSQR) Matrix Factorization Using MapReduce
This example shows how to compute a tall skinny QR (TSQR) factorization using mapreduce. It
demonstrates how to chain mapreduce calls to perform multiple iterations of factorizations, and uses
the info argument of the map function to compute numeric keys.

Prepare Data

Create a datastore using the airlinesmall.csv data set. This 12-megabyte data set contains 29
columns of flight information for several airline carriers, including arrival and departure times. In this
example, the variables of interest are ArrDelay (flight arrival delay), DepDelay (flight departure
delay) and Distance (total flight distance).

ds = tabularTextDatastore('airlinesmall.csv', 'TreatAsMissing', 'NA');
ds.ReadSize = 1000;
ds.SelectedVariableNames = {'ArrDelay', 'DepDelay', 'Distance'};

The datastore treats 'NA' values as missing and replaces the missing values with NaN values by
default. The ReadSize property lets you specify how to partition the data into blocks. Additionally,
the SelectedVariableNames property allows you to work with only the specified variables of
interest, which you can verify using preview.

preview(ds)

ans=8×3 table
 ArrDelay DepDelay Distance
 ________ ________ ________

 8 12 308
 8 1 296
 21 20 480
 13 12 296
 4 -1 373
 59 63 308
 3 -2 447
 11 -1 954

Chain MapReduce Calls

The implementation of the multi-iteration TSQR algorithm needs to chain consecutive mapreduce
calls. To demonstrate the general chaining design pattern, this example uses two mapreduce
iterations. The output from the map function calls is passed into a large set of reducers, and then the
output of these reducers becomes the input for the next mapreduce iteration.

First MapReduce Iteration

In the first iteration, the map function, tsqrMapper, receives one block (the ith) of data, which is a
table of size Ni × 3. The mapper computes the R matrix of this block of data and stores it as an
intermediate result. Then, mapreduce aggregates the intermediate results by unique key before
sending them to the reduce function. Thus, mapreduce sends all intermediate R matrices with the
same key to the same reducer.

Since the reducer uses qr, which is an in-memory MATLAB function, it's best to first make sure that
the R matrices fit in memory. This example divides the dataset into eight partitions. The mapreduce
function reads the data in blocks and passes the data along with some meta information to the map

 Tall Skinny QR (TSQR) Matrix Factorization Using MapReduce

12-73

function. The info input argument is the second input to the map function and it contains the read
offset and file size information that are necessary to generate the key,

 key = ceil(offset/fileSize/numPartitions).

Display the map function file.

function tsqrMapper(data, info, intermKVStore)
 x = data{:,:};
 x(any(isnan(x),2),:) = [];% Remove missing values
 [~, r] = qr(x,0);

 % intermKey = randi(4); % random integer key for partitioning intermediate results
 intermKey = computeKey(info, 8);
 add(intermKVStore,intermKey, r);

 function key = computeKey(info, numPartitions)
 fileSize = info.FileSize; % total size of the underlying data file
 partitionSize = fileSize/numPartitions; % size in bytes of each partition
 offset = info.Offset; % offset in bytes of the current read
 key = ceil(offset/partitionSize);
 end
end

The reduce function receives a list of the intermediate R matrices, vertically concatenates them, and
computes the R matrix of the concatenated matrix.

Display the reduce function file.

function tsqrReducer(intermKey, intermValIter, outKVStore)
 x = [];

 while (intermValIter.hasnext)
 x = [x;intermValIter.getnext];
 end
 % Note that this approach assumes the concatenated intermediate values fit
 % in memory. Consider increasing the number of reduce tasks (increasing the
 % number of partitions in the tsqrMapper) and adding more iterations if it
 % does not fit in memory.

 [~, r] =qr(x,0);

 add(outKVStore,intermKey,r);
end

Use mapreduce to apply the map and reduce functions to the datastore, ds.

outds1 = mapreduce(ds, @tsqrMapper, @tsqrReducer);

* MAPREDUCE PROGRESS *

Map 0% Reduce 0%
Map 10% Reduce 0%
Map 20% Reduce 0%
Map 30% Reduce 0%
Map 40% Reduce 0%
Map 50% Reduce 0%

12 Large Data

12-74

Map 60% Reduce 0%
Map 70% Reduce 0%
Map 80% Reduce 0%
Map 90% Reduce 0%
Map 100% Reduce 0%
Map 100% Reduce 11%
Map 100% Reduce 22%
Map 100% Reduce 33%
Map 100% Reduce 44%
Map 100% Reduce 56%
Map 100% Reduce 67%
Map 100% Reduce 78%
Map 100% Reduce 89%
Map 100% Reduce 100%

mapreduce returns an output datastore, outds1, with files in the current folder.

Second MapReduce Iteration

The second iteration uses the output of the first iteration, outds1, as its input. This iteration uses an
identity mapper, identityMapper, which simply copies over the data using a single key,
'Identity'.

Display the identity mapper file.

function identityMapper(data, info, intermKVStore)
 % This mapper function simply copies the data and add them to the
 % intermKVStore as intermediate values.
 x = data.Value{:,:};
 add(intermKVStore,'Identity', x);
end

The reducer function is the same in both iterations. The use of a single key by the map function
means that mapreduce only calls the reduce function once in the second iteration.

Use mapreduce to apply the identity mapper and the same reducer to the output from the first
mapreduce call.

outds2 = mapreduce(outds1, @identityMapper, @tsqrReducer);

* MAPREDUCE PROGRESS *

Map 0% Reduce 0%
Map 11% Reduce 0%
Map 22% Reduce 0%
Map 33% Reduce 0%
Map 44% Reduce 0%
Map 55% Reduce 0%
Map 66% Reduce 0%
Map 77% Reduce 0%
Map 88% Reduce 0%
Map 100% Reduce 0%
Map 100% Reduce 100%

View Results

Read the final results from the output datastore.

 Tall Skinny QR (TSQR) Matrix Factorization Using MapReduce

12-75

r = readall(outds2);
r.Value{:}

ans = 3×3
105 ×

 0.1091 0.0893 0.5564
 0 -0.0478 -0.4890
 0 0 3.0130

Local Functions

Listed here are the map and reduce functions that mapreduce applies to the data.

function tsqrMapper(data, info, intermKVStore)
 x = data{:,:};
 x(any(isnan(x),2),:) = [];% Remove missing values
 [~, r] = qr(x,0);

 % intermKey = randi(4); % random integer key for partitioning intermediate results
 intermKey = computeKey(info, 8);
 add(intermKVStore,intermKey, r);

 function key = computeKey(info, numPartitions)
 fileSize = info.FileSize; % total size of the underlying data file
 partitionSize = fileSize/numPartitions; % size in bytes of each partition
 offset = info.Offset; % offset in bytes of the current read
 key = ceil(offset/partitionSize);
 end
end
%---
function tsqrReducer(intermKey, intermValIter, outKVStore)
 x = [];

 while (intermValIter.hasnext)
 x = [x;intermValIter.getnext];
 end
 % Note that this approach assumes the concatenated intermediate values fit
 % in memory. Consider increasing the number of reduce tasks (increasing the
 % number of partitions in the tsqrMapper) and adding more iterations if it
 % does not fit in memory.

 [~, r] =qr(x,0);

 add(outKVStore,intermKey,r);
end
%---
function identityMapper(data, info, intermKVStore)
 % This mapper function simply copies the data and add them to the
 % intermKVStore as intermediate values.
 x = data.Value{:,:};
 add(intermKVStore,'Identity', x);
end
%---

12 Large Data

12-76

Reference

1 Paul G. Constantine and David F. Gleich. 2011. Tall and skinny QR factorizations in MapReduce
architectures. In Proceedings of the Second International Workshop on MapReduce and Its
Applications (MapReduce '11). ACM, New York, NY, USA, 43-50. DOI=10.1145/1996092.1996103
https://doi.acm.org/10.1145/1996092.1996103

See Also
mapreduce | tabularTextDatastore

More About
• “Getting Started with MapReduce” on page 12-3
• “Build Effective Algorithms with MapReduce” on page 12-18

 Tall Skinny QR (TSQR) Matrix Factorization Using MapReduce

12-77

https://doi.acm.org/10.1145/1996092.1996103

Compute Maximum Average HSV of Images with MapReduce
This example shows how to use ImageDatastore and mapreduce to find images with maximum
hue, saturation and brightness values in an image collection.

Prepare Data

Create a datastore using the images in toolbox/matlab/demos and toolbox/matlab/imagesci.
The selected images have the extensions .jpg, .tif and .png.

demoFolder = fullfile(matlabroot, 'toolbox', 'matlab', 'demos');
imsciFolder = fullfile(matlabroot, 'toolbox', 'matlab', 'imagesci');

Create a datastore using the folder paths, and filter which images are included in the datastore using
the FileExtensions Name-Value pair.

ds = imageDatastore({demoFolder, imsciFolder}, ...
 'FileExtensions', {'.jpg', '.tif', '.png'});

Find Average Maximum HSV from All Images

One way to find the maximum average hue, saturation, and brightness values in the collection of
images is to use readimage within a for-loop, processing the images one at a time. For an example of
this method, see “Read and Analyze Image Files” on page 12-98.

This example uses mapreduce to accomplish the same task, however, the mapreduce method is
highly scalable to larger collections of images. While the for-loop method is reasonable for small
collections of images, it does not scale well to a large collection of images.

Scale to MapReduce

• The mapreduce function requires a map function and a reduce function as inputs.
• The map function receives blocks of data and outputs intermediate results.
• The reduce function reads the intermediate results and produces a final result.

Map function

• In this example, the map function stores the image data and the average HSV values as
intermediate values.

• The intermediate values are associated with 3 keys, 'Average Hue', 'Average Saturation'
and 'Average Brightness'.

function hueSaturationValueMapper(data, info, intermKVStore)
 if ~ismatrix(data)
 hsv = rgb2hsv(data);

 % Extract Hue values
 h = hsv(:,:,1);

 % Extract Saturation values
 s = hsv(:,:,2);

 % Extract Brightness values
 v = hsv(:,:,3);

12 Large Data

12-78

 % Find average of HSV values
 avgH = mean(h(:));
 avgS = mean(s(:));
 avgV = mean(v(:));

 % Add intermediate key-value pairs
 add(intermKVStore, 'Average Hue', struct('Filename', info.Filename, 'Avg', avgH));
 add(intermKVStore, 'Average Saturation', struct('Filename', info.Filename, 'Avg', avgS));
 add(intermKVStore, 'Average Brightness', struct('Filename', info.Filename, 'Avg', avgV));
 end
end

Reduce function

• The reduce function receives a list of the image file names along with the respective average HSV
values and finds the overall maximum values of average hue, saturation and brightness values.

• mapreduce only calls this reduce function 3 times, since the map function only adds three unique
keys.

• The reduce function uses add to add a final key-value pair to the output. For example, 'Maximum
Average Hue' is the key and the respective file name is the value.

function hueSaturationValueReducer(key, intermValIter, outKVSTore)
 maxAvg = 0;
 maxImageFilename = '';

 % Loop over values for each key
 while hasnext(intermValIter)
 value = getnext(intermValIter);
 % Compare values to determine maximum
 if value.Avg > maxAvg
 maxAvg = value.Avg;
 maxImageFilename = value.Filename;
 end
 end

 % Add final key-value pair
 add(outKVSTore, ['Maximum ' key], maxImageFilename);
end

Run MapReduce

Use mapreduce to apply the map and reduce functions to the datastore, ds.

maxHSV = mapreduce(ds, @hueSaturationValueMapper, @hueSaturationValueReducer);

* MAPREDUCE PROGRESS *

Map 0% Reduce 0%
Map 12% Reduce 0%
Map 25% Reduce 0%
Map 37% Reduce 0%
Map 50% Reduce 0%
Map 62% Reduce 0%
Map 75% Reduce 0%
Map 87% Reduce 0%
Map 100% Reduce 0%

 Compute Maximum Average HSV of Images with MapReduce

12-79

Map 100% Reduce 33%
Map 100% Reduce 67%
Map 100% Reduce 100%

mapreduce returns a datastore, maxHSV, with files in the current folder.

Read and display the final result from the output datastore, maxHSV. Use find and strcmp to find
the file index from the Files property.

tbl = readall(maxHSV);
for i = 1:height(tbl)
 figure;
 idx = find(strcmp(ds.Files, tbl.Value{i}));
 imshow(readimage(ds, idx), 'InitialMagnification', 'fit');
 title(tbl.Key{i});
end

12 Large Data

12-80

 Compute Maximum Average HSV of Images with MapReduce

12-81

Local Functions

Listed here are the map and reduce functions that mapreduce applies to the data.

function hueSaturationValueMapper(data, info, intermKVStore)
 if ~ismatrix(data)
 hsv = rgb2hsv(data);

 % Extract Hue values
 h = hsv(:,:,1);

 % Extract Saturation values
 s = hsv(:,:,2);

 % Extract Brightness values
 v = hsv(:,:,3);

 % Find average of HSV values
 avgH = mean(h(:));
 avgS = mean(s(:));
 avgV = mean(v(:));

 % Add intermediate key-value pairs
 add(intermKVStore, 'Average Hue', struct('Filename', info.Filename, 'Avg', avgH));
 add(intermKVStore, 'Average Saturation', struct('Filename', info.Filename, 'Avg', avgS));
 add(intermKVStore, 'Average Brightness', struct('Filename', info.Filename, 'Avg', avgV));
 end
end

12 Large Data

12-82

%--
function hueSaturationValueReducer(key, intermValIter, outKVSTore)
 maxAvg = 0;
 maxImageFilename = '';

 % Loop over values for each key
 while hasnext(intermValIter)
 value = getnext(intermValIter);
 % Compare values to determine maximum
 if value.Avg > maxAvg
 maxAvg = value.Avg;
 maxImageFilename = value.Filename;
 end
 end

 % Add final key-value pair
 add(outKVSTore, ['Maximum ' key], maxImageFilename);
end
%--

See Also
imageDatastore | mapreduce | tall

More About
• “Getting Started with MapReduce” on page 12-3
• “Build Effective Algorithms with MapReduce” on page 12-18
• “Tall Arrays for Out-of-Memory Data” on page 12-136
• “Getting Started with Datastore” on page 12-84

 Compute Maximum Average HSV of Images with MapReduce

12-83

Getting Started with Datastore
In this section...
“What Is a Datastore?” on page 12-84
“Create and Read from a Datastore” on page 12-85

What Is a Datastore?
A datastore is an object for reading a single file or a collection of files or data. The datastore acts as a
repository for data that has the same structure and formatting. For example, each file in a datastore
must contain data of the same type (such as numeric or text) appearing in the same order, and
separated by the same delimiter.

A datastore is useful when:

• Each file in the collection might be too large to fit in memory. A datastore allows you to read and
analyze data from each file in smaller portions that do fit in memory.

• Files in the collection have arbitrary names. A datastore acts as a repository for files in one or
more folders. The files are not required to have sequential names.

You can create a datastore based on the type of data or application. The different types of datastores
contain properties pertinent to the type of data that they support. For example, see the following
table for a list of MATLAB datastores. For a complete list of datastores, see “Select Datastore for File
Format or Application” on page 12-88.

Type of File or Data Datastore Type
Text files containing column-oriented data, including
CSV files.

TabularTextDatastore

12 Large Data

12-84

Type of File or Data Datastore Type
Image files, including formats that are supported by
imread such as JPEG and PNG.

ImageDatastore

Spreadsheet files with a supported Excel format such
as .xlsx.

SpreadsheetDatastore

Key-value pair data that are inputs to or outputs of
mapreduce.

KeyValueDatastore

Parquet files containing column-oriented data. ParquetDatastore
Custom file formats. Requires a provided function for
reading data.

FileDatastore

Datastore for checkpointing tall arrays. TallDatastore

Create and Read from a Datastore
Use the tabularTextDatastore function to create a datastore from the sample file
airlinesmall.csv, which contains departure and arrival information about individual airline
flights. The result is a TabularTextDatastore object.

ds = tabularTextDatastore('airlinesmall.csv')

ds =

 TabularTextDatastore with properties:

 Files: {
 ' ...\matlab\toolbox\matlab\demos\airlinesmall.csv'
 }
 Folders: {
 ' ...\matlab\toolbox\matlab\demos'
 }
 FileEncoding: 'UTF-8'
 AlternateFileSystemRoots: {}
 PreserveVariableNames: false
 ReadVariableNames: true
 VariableNames: {'Year', 'Month', 'DayofMonth' ... and 26 more}
 DatetimeLocale: en_US

 Text Format Properties:
 NumHeaderLines: 0
 Delimiter: ','
 RowDelimiter: '\r\n'
 TreatAsMissing: ''
 MissingValue: NaN

 Advanced Text Format Properties:
 TextscanFormats: {'%f', '%f', '%f' ... and 26 more}
 TextType: 'char'
 ExponentCharacters: 'eEdD'
 CommentStyle: ''
 Whitespace: ' \b\t'
 MultipleDelimitersAsOne: false

 Properties that control the table returned by preview, read, readall:
 SelectedVariableNames: {'Year', 'Month', 'DayofMonth' ... and 26 more}
 SelectedFormats: {'%f', '%f', '%f' ... and 26 more}
 ReadSize: 20000 rows
 OutputType: 'table'
 RowTimes: []

 Write-specific Properties:
 SupportedOutputFormats: ["txt" "csv" "xlsx" "xls" "parquet" "parq"]
 DefaultOutputFormat: "txt"

 Getting Started with Datastore

12-85

After creating the datastore, you can preview the data without having to load it all into memory. You
can specify variables (columns) of interest using the SelectedVariableNames property to preview
or read only those variables.

ds.SelectedVariableNames = {'DepTime','DepDelay'};
preview(ds)

ans =

 8×2 table

 DepTime DepDelay
 _______ ________

 642 12
 1021 1
 2055 20
 1332 12
 629 -1
 1446 63
 928 -2
 859 -1

You can specify the values in your data which represent missing values. In airlinesmall.csv,
missing values are represented by NA.

ds.TreatAsMissing = 'NA';

If all of the data in the datastore for the variables of interest fit in memory, you can read it using the
readall function.

T = readall(ds);

Otherwise, read the data in smaller subsets that do fit in memory, using the read function. By
default, the read function reads from a TabularTextDatastore 20,000 rows at a time. However,
you can change this value by assigning a new value to the ReadSize property.

ds.ReadSize = 15000;

12 Large Data

12-86

Reset the datastore to the initial state before re-reading, using the reset function. By calling the
read function within a while loop, you can perform intermediate calculations on each subset of data,
and then aggregate the intermediate results at the end. This code calculates the maximum value of
the DepDelay variable.

reset(ds)
X = [];
while hasdata(ds)
 T = read(ds);
 X(end+1) = max(T.DepDelay);
end
maxDelay = max(X)

maxDelay =

 1438

If the data in each individual file fits in memory, you can specify that each call to read should read
one complete file rather than a specific number of rows.

reset(ds)
ds.ReadSize = 'file';
X = [];
while hasdata(ds)
 T = read(ds);
 X(end+1) = max(T.DepDelay);
end
maxDelay = max(X);

In addition to reading subsets of data in a datastore, you can apply map and reduce functions to the
datastore using mapreduce or create a tall array using tall. For more information, see “Getting
Started with MapReduce” on page 12-3 and “Tall Arrays for Out-of-Memory Data” on page 12-136.

See Also
KeyValueDatastore | fileDatastore | imageDatastore | mapreduce |
spreadsheetDatastore | tabularTextDatastore | tall

Related Examples
• “Select Datastore for File Format or Application” on page 12-88
• “Read and Analyze Large Tabular Text File” on page 12-96
• “Read and Analyze Image Files” on page 12-98

 Getting Started with Datastore

12-87

Select Datastore for File Format or Application
A datastore is a repository for collections of data that are too large to fit in memory. Each file format
and application uses a different type of datastore, which contains properties pertinent to the type of
data or application that it supports. MATLAB provides datastores for standard file formats such as
Excel files and datastores for specific applications such as Deep Learning. In addition to the existing
datastores, if your data is in a proprietary format, then you can develop a customized datastore using
the custom datastore framework.

Datastores for Standard File Formats
For a collection of data in standard file format use one of these options.

Datastore Description
TabularTextDatastore Text files containing column-oriented data,

including CSV files
SpreadsheetDatastore Spreadsheet files with a supported Excel format

such as .xlsx
ImageDatastore Image files, including formats that are supported

by imread such as JPEG and PNG
ParquetDatastore Parquet files containing column-oriented data
FileDatastore Files with nonstandard file format

Requires a custom file reading function

Transform or combine existing datastores.

Datastore Description
CombinedDatastore Datastore to combine data read from multiple

underlying datastores
TransformedDatastore Datastore to transform underlying datastore

Datastores to integrate with MapReduce and tall arrays.

Datastore Description
KeyValueDatastore Key-value pair data that are inputs to or outputs

of mapreduce
TallDatastore Datastore for checkpointing tall arrays

Datastores for Specific Applications
Based on your application use one of these datastores.

12 Large Data

12-88

Application Datastore Description Toolbox Required
Simulink Model Data SimulationDatastor

e
Datastore for simulation
input and output data
that you use with a
Simulink model

Simulink

Simulation Ensemble
and Predictive
Maintenance Data

simulationEnsemble
Datastore

Datastore to manage
simulation ensemble
data

Predictive Maintenance
Toolbox™

fileEnsembleDatast
ore

Datastore to manage
ensemble data in
custom file format

Predictive Maintenance
Toolbox

Measurement Data
Format (MDF) Files

mdfDatastore Datastore for collection
of MDF files

Vehicle Network
Toolbox™

mdfDatastore Datastore for collection
of MDF files

Powertrain Blockset™

Deep Learning

Datastores for
preprocessing image or
sequence data

pixelLabelDatastor
e

Datastore for pixel label
data

Computer Vision
Toolbox™ and Deep
Learning Toolbox™

pixelLabelImageDat
astore

Datastore for training
semantic segmentation
networks

Datastore is
nondeterministic

Computer Vision
Toolbox and Deep
Learning Toolbox

boxLabelDatastore Datastore for bounding
box label data

Computer Vision
Toolbox and Deep
Learning Toolbox

signalDatastore Datastore for collection
of signal files

Signal Processing
Toolbox™ and Deep
Learning Toolbox

randomPatchExtract
ionDatastore

Datastore for extracting
random patches from
images or pixel label
images

Datastore is
nondeterministic

Image Processing
Toolbox™ and Deep
Learning Toolbox

denoisingImageData
store

Datastore to train an
image denoising deep
neural network

Datastore is
nondeterministic

Image Processing
Toolbox and Deep
Learning Toolbox

 Select Datastore for File Format or Application

12-89

Application Datastore Description Toolbox Required
augmentedImageData
store

Datastore for resizing
and augmenting
training images

Datastore is
nondeterministic

Deep Learning Toolbox

Audio Data audioDatastore Datastore for collection
of audio files

Audio Toolbox™

Out-of-Memory Image
Data

bigimageDatastore Datastore to manage
blocks of a single image
that is too large to fit in
memory

Image Processing
Toolbox

Database Data databaseDatastore Datastore for collections
of data in a relational
database

Database Toolbox

Custom File Formats
For a collection of data in a custom file format, if each individual file fits in memory, use
FileDatastore along with your custom file reading function. Otherwise, develop your own fully
customized datastore for custom or proprietary data using the matlab.io.Datastore class. See
“Develop Custom Datastore” on page 12-107.

Nondeterministic Datastores
Datastores that do not return the exact same data for a call to the read function after a call to the
reset function are nondeterministic datastores. Do not use nondeterministic datastores with tall
arrays, mapreduce, or any other code that requires reading the data more than once.

Some applications require data that is randomly augmented or transformed. For example, the
augmentedImageDatastore datastore, from the deep learning application augments training image
data with randomized preprocessing operations to help prevent the network from overfitting and
memorizing the exact details of the training images. The output of this datastore is different every
time you perform a read operation after a call to reset.

See Also
FileDatastore | ImageDatastore | SpreadsheetDatastore | TabularTextDatastore |
TallDatastore | tall

More About
• “Getting Started with Datastore” on page 12-84
• “Tall Arrays for Out-of-Memory Data” on page 12-136
• “Develop Custom Datastore” on page 12-107

12 Large Data

12-90

Work with Remote Data
In MATLAB, you can read and write data to and from a remote location, such as cloud storage in
Amazon S3 (Simple Storage Service), Microsoft Azure Storage Blob, and Hadoop Distributed File
System (HDFS).

You can access remote data using datastore objects. Use the datastore to examine part of your data
from your desktop version of MATLAB. Then, after prototyping your code locally, you can scale up to a
cluster or cloud. Scaling up improves execution efficiency as it is more efficient to run large
calculations in the same location as the data. To write data to a remote location, you can use the
write function on a tall or distributed array.

Amazon S3
MATLAB enables you to use Amazon S3 as an online file storage web service offered by Amazon Web
Services. You can use data stored on Amazon S3 with datastore objects such as ImageDatastore,
FileDatastore, SpreadsheetDatastore, or TabularTextDatastore. When you specify the
location of the data, you must specify the full path to the files or folders using a uniform resource
locator (URL) of the form

s3://bucketname/path_to_file

bucketname is the name of the container and path_to_file is the path to the file or folders.

Amazon S3 provides data storage through web services interfaces. You can use a bucket as a
container to store objects in Amazon S3.

Set Up Access

To work with remote data in Amazon S3, you must set up access first:

1 Sign up for an Amazon Web Services (AWS) root account. See Amazon Web Services: Account.
2 Using your AWS root account, create an IAM (Identity and Access Management) user. See

Creating an IAM User in Your AWS Account.
3 Generate an access key to receive an access key ID and a secret access key. See Managing

Access Keys for IAM Users.
4 Configure your machine with the AWS access key ID, secret access key, and region using the

AWS Command Line Interface tool from https://aws.amazon.com/cli/. Alternatively, set the
environment variables directly by using setenv:

• AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY — Authenticate and enable use of
Amazon S3 services. (You generated this pair of access key variables in step 3.)

• AWS_DEFAULT_REGION (optional) — Select the geographic region of your bucket. The value
of this environment variable is typically determined automatically, but the bucket owner might
require that you set it manually.

• AWS_SESSION_TOKEN (optional) — Specify the session token if you are using temporary
security credentials, such as with AWS® Federated Authentication.

If you are using Parallel Computing Toolbox, you must ensure the cluster has been configured to
access S3 services. You can copy your client environment variables to the workers on a cluster by
setting EnvironmentVariables in parpool, batch, createJob or in the Cluster Profile Manager.

 Work with Remote Data

12-91

https://aws.amazon.com/s3/
https://aws.amazon.com/account/
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
https://aws.amazon.com/cli/

Read Data from Amazon S3

You can read data from Amazon S3 using datastore objects. For example, create an
ImageDatastore, read a specified image from the datastore, and then display the image to screen.

setenv('AWS_ACCESS_KEY_ID', 'YOUR_AWS_ACCESS_KEY_ID');
setenv('AWS_SECRET_ACCESS_KEY', 'YOUR_AWS_SECRET_ACCESS_KEY');

ds = imageDatastore('s3://bucketname/image_datastore/jpegfiles', ...
 'IncludeSubfolders', true, 'LabelSource', 'foldernames');
img = ds.readimage(1);
imshow(img)

Write Data to Amazon S3

To write data to Amazon S3, call the write function on a distributed or tall array, and provide the full
path to a folder in the cloud storage. The following example shows how to read tabular data from
Amazon S3 into a tall array, preprocess it by removing missing entries and sorting, and then write it
back to Amazon S3.
setenv('AWS_ACCESS_KEY_ID', 'YOUR_AWS_ACCESS_KEY_ID');
setenv('AWS_SECRET_ACCESS_KEY', 'YOUR_AWS_SECRET_ACCESS_KEY');

ds = tabularTextDatastore('s3://bucketname/dataset/airlinesmall.csv', ...
 'TreatAsMissing', 'NA', 'SelectedVariableNames', {'ArrDelay'});
tt = tall(ds);
tt = sortrows(rmmissing(tt));
write('s3://bucketname/preprocessedData/',tt);

To read your tall data back, use the datastore function.

ds = datastore('s3://bucketname/preprocessedData/');
tt = tall(ds);

Microsoft Azure Storage Blob
MATLAB enables you to use Windows Azure® Storage Blob (WASB) as an online file storage web
service offered by Microsoft. You can use data stored on Azure with datastore objects such as
ImageDatastore, FileDatastore, SpreadsheetDatastore, or TabularTextDatastore. When
you specify the location of the data, you must specify the full path to the files or folders using a
uniform resource locator (URL) of the form

wasbs://container@account/path_to_file/file.ext

container@account is the name of the container and path_to_file is the path to the file or
folders.

Azure provides data storage through web services interfaces. You can use a blob to store data files in
Azure. See Introduction to Azure for more information.

Set Up Access

To work with remote data in Azure storage, you must set up access first:

1 Sign up for a Microsoft Azure account, see Microsoft Azure Account.
2 Set up your authentication details by setting exactly one of the two following environment

variables using setenv:

12 Large Data

12-92

https://azure.microsoft.com/en-us/
https://docs.microsoft.com/en-us/azure/fundamentals-introduction-to-azure
https://azure.microsoft.com/en-us/

• MW_WASB_SAS_TOKEN — Authentication via Shared Access Signature (SAS)

Obtain an SAS. For details, see the "Get the SAS for a blob container" section in Manage
Azure Blob Storage resources with Storage Explorer.

In MATLAB, set MW_WASB_SAS_TOKEN to the SAS query string. For example,
setenv MW_WASB_SAS_TOKEN '?st=2017-04-11T09%3A45%3A00Z&se=2017-05-12T09%3A45%3A00Z&sp=rl&sv=2015-12-11&sr=c&sig=E12eH4cRCLilp3Tw%2BArdYYR8RruMW45WBXhWpMzSRCE%3D'

You must set this string to a valid SAS token generated from the Azure Storage web UI or
Explorer.

• MW_WASB_SECRET_KEY — Authentication via one of the Account's two secret keys

Each Storage Account has two secret keys that permit administrative privilege access. This
same access can be given to MATLAB without having to create an SAS token by setting the
MW_WASB_SECRET_KEY environment variable. For example:
setenv MW_WASB_SECRET_KEY '1234567890ABCDEF1234567890ABCDEF1234567890ABCDEF'

If you are using Parallel Computing Toolbox, you must copy your client environment variables to the
workers on a cluster by setting EnvironmentVariables in parpool, batch, createJob or in the
Cluster Profile Manager.

For more information, see Use Azure storage with Azure HDInsight clusters.

Read Data from Azure

To read data from a WASB location, use a datastore object. To produce the file location, start with the
filename file.ext, and prefix it with the file path /path_to_file and your account name
wasbs://container@account/. The complete data location uses the following syntax:

wasbs://container@account/path_to_file/file.ext

container@account is the name of the container and path_to_file is the path to the file or
folders.

For example, if you have a file airlinesmall.csv in a folder /airline on a test storage account
wasbs://blobContainer@storageAccount.blob.core.windows.net/, then you can create a
datastore by using:
location = 'wasbs://blobContainer@storageAccount.blob.core.windows.net/airline/airlinesmall.csv';

ds = tabularTextDatastore(location, 'TreatAsMissing', 'NA', ...
 'SelectedVariableNames', {'ArrDelay'});

You can use Azure for all calculations datastores support, including direct reading, mapreduce, tall
arrays and deep learning. For example, create an ImageDatastore, read a specified image from the
datastore, and then display the image to screen.
setenv('MW_WASB_SAS_TOKEN', 'YOUR_WASB_SAS_TOKEN');
ds = imageDatastore('wasbs://YourContainer@YourAccount.blob.core.windows.net/', ...
 'IncludeSubfolders', true, 'LabelSource', 'foldernames');
img = ds.readimage(1);
imshow(img)

Write Data to Azure

To write data to Azure, call the write function on a distributed or tall array, and provide the full path
to a folder in the cloud storage. The following example shows how to read tabular data from Azure

 Work with Remote Data

12-93

https://docs.microsoft.com/en-us/azure/vs-azure-tools-storage-explorer-blobs
https://docs.microsoft.com/en-us/azure/vs-azure-tools-storage-explorer-blobs
https://docs.microsoft.com/en-us/azure/hdinsight/hdinsight-hadoop-use-blob-storage

into a tall array, preprocess it by removing missing entries and sorting, and then write it back to
Azure.

setenv('MW_WASB_SAS_TOKEN', 'YOUR_WASB_SAS_TOKEN');

ds = tabularTextDatastore('wasbs://YourContainer@YourAccount.blob.core.windows.net/dataset/airlinesmall.csv', ...
 'TreatAsMissing', 'NA', 'SelectedVariableNames', {'ArrDelay'});
tt = tall(ds);
tt = sortrows(rmmissing(tt));
write('wasbs://YourContainer@YourAccount.blob.core.windows.net/preprocessedData/',tt);

To read your tall data back, use the datastore function.
ds = datastore('wasbs://YourContainer@YourAccount.blob.core.windows.net/preprocessedData/');
tt = tall(ds);

Hadoop Distributed File System
Specify Location of Data

You also can create a datastore for a collection of text files or sequence files that reside on the
Hadoop Distributed File System (HDFS) using the tabularTextDatastore function. When you
specify the location of the data, you must specify the full path to the files or folders using a uniform
resource locator (URL) of one of these forms:

hdfs:/path_to_file

hdfs:///path_to_file

hdfs://hostname/path_to_file

hostname is the name of the host or server and path_to_file is the path to the file or folders.
Specifying the hostname is optional. When you do not specify the hostname, Hadoop uses the
default host name associated with the Hadoop Distributed File System (HDFS) installation in
MATLAB.

For example, both these commands create a datastore for the file, file1.txt, in a folder named
data located at a host named myserver:

• ds = tabularTextDatastore('hdfs:///data/file1.txt')

• ds = tabularTextDatastore('hdfs://myserver/data/file1.txt')

If hostname is specified, it must correspond to the namenode defined by the fs.default.name
property in the Hadoop XML configuration files for your Hadoop cluster.

Optionally, you can include the port number. For example, this location specifies a host named
myserver with port 7867, containing the file file1.txt in a folder named data:

'hdfs://myserver:7867/data/file1.txt'

The specified port number must match the port number set in your HDFS configuration.

Set Hadoop Environment Variable

Before reading from HDFS, use the setenv function to set the appropriate environment variable to
the folder where Hadoop is installed. This folder must be accessible from the current machine.

12 Large Data

12-94

• Hadoop v1 only — Set the HADOOP_HOME environment variable.
• Hadoop v2 only — Set the HADOOP_PREFIX environment variable.
• If you work with both Hadoop v1 and Hadoop v2, or if the HADOOP_HOME and HADOOP_PREFIX

environment variables are not set, then set the MATLAB_HADOOP_INSTALL environment variable.

For example, use this command to set the HADOOP_HOME environment variable. hadoop-folder is
the folder where Hadoop is installed, and /mypath/ is the path to that folder.

setenv('HADOOP_HOME','/mypath/hadoop-folder');

HDFS data on Hortonworks or Cloudera

If your current machine has access to HDFS data on Hortonworks or Cloudera®, then you do not have
to set the HADOOP_HOME or HADOOP_PREFIX environment variables. MATLAB automatically assigns
these environment variables when using Hortonworks or Cloudera application edge nodes.

Prevent Clearing Code from Memory

When reading from HDFS or when reading Sequence files locally, the datastore function calls the
javaaddpath command. This command does the following:

• Clears the definitions of all Java classes defined by files on the dynamic class path
• Removes all global variables and variables from the base workspace
• Removes all compiled scripts, functions, and MEX-functions from memory

To prevent persistent variables, code files, or MEX-files from being cleared, use the mlock function.

Write Data to HDFS

Use the write function to write your tall and distributed arrays to a Hadoop Distributed File System.
When you call this function on a distributed or tall array, you must specify the full path to a HDFS
folder. The following example shows how to read tabular data from HDFS into a tall array, preprocess
it by removing missing entries and sorting, and then write it back to HDFS.
ds = tabularTextDatastore('hdfs://myserver/some/path/dataset/airlinesmall.csv', ...
 'TreatAsMissing', 'NA', 'SelectedVariableNames', {'ArrDelay'});
tt = tall(ds);
tt = sortrows(rmmissing(tt));
write('hdfs://myserver/some/path/preprocessedData/',tt);

To read your tall data back, use the datastore function.

ds = datastore('hdfs://myserver/some/path/preprocessedData/');
tt = tall(ds);

See Also
datastore | imageDatastore | imread | imshow | javaaddpath | mlock | setenv |
tabularTextDatastore | write

Related Examples
• “Read and Analyze Hadoop Sequence File” on page 12-105
• “Upload Deep Learning Data to the Cloud” (Parallel Computing Toolbox)

 Work with Remote Data

12-95

Read and Analyze Large Tabular Text File
This example shows how to create a datastore for a large text file containing tabular data, and then
read and process the data one block at a time or one file at a time.

Create a Datastore

Create a datastore from the sample file airlinesmall.csv using the tabularTextDatastore
function. When you create the datastore, you can specify that the text, NA, in the data is treated as
missing data.

ds = tabularTextDatastore('airlinesmall.csv','TreatAsMissing','NA');

You can modify the properties of the datastore by changing its properties. Modify the MissingValue
property to specify that missing values are treated as 0.

ds.MissingValue = 0;

In this example, select the variable for the arrival delay, ArrDelay, as the variable of interest.

ds.SelectedVariableNames = 'ArrDelay';

Preview the data using the preview function. This function does not affect the state of the datastore.

data = preview(ds)

data=8×1 table
 ArrDelay

 8
 8
 21
 13
 4
 59
 3
 11

Read Subsets of Data

By default, read reads from a TabularTextDatastore 20000 rows at a time. To read a different
number of rows in each call to read, modify the ReadSize property of ds.

ds.ReadSize = 15000;

Read subsets of the data from ds using the read function in a while loop. The loop executes until
hasdata(ds) returns false.

sums = [];
counts = [];
while hasdata(ds)
 T = read(ds);

 sums(end+1) = sum(T.ArrDelay);
 counts(end+1) = length(T.ArrDelay);
end

12 Large Data

12-96

Compute the average arrival delay

avgArrivalDelay = sum(sums)/sum(counts)

avgArrivalDelay = 6.9670

Reset the datastore to allow rereading of the data.

reset(ds)

Read One File At a Time

A datastore can contain multiple files, each with a different number of rows. You can read from the
datastore one complete file at a time by setting the ReadSize property to 'file'.

ds.ReadSize = 'file';

When you change the value of ReadSize from a number to 'file' or vice versa, MATLAB resets the
datastore.

Read from ds using the read function in a while loop, as before, and compute the average arrival
delay.

sums = [];
counts = [];
while hasdata(ds)
 T = read(ds);

 sums(end+1) = sum(T.ArrDelay);
 counts(end+1) = length(T.ArrDelay);
end
avgArrivalDelay = sum(sums)/sum(counts)

avgArrivalDelay = 6.9670

See Also
mapreduce | tabularTextDatastore | tall

Related Examples
• “Tall Arrays for Out-of-Memory Data” on page 12-136
• “Getting Started with MapReduce” on page 12-3

 Read and Analyze Large Tabular Text File

12-97

Read and Analyze Image Files
This example shows how to create a datastore for a collection of images, read the image files, and
find the images with the maximum average hue, saturation, and brightness (HSV). For a similar
example on image processing using the mapreduce function, see “Compute Maximum Average HSV
of Images with MapReduce” on page 12-78.

Identify two MATLAB® directories and create a datastore containing images with .jpg, .tif,
and .png extensions in those directories.

location1 = fullfile(matlabroot,'toolbox','matlab','demos');
location2 = fullfile(matlabroot,'toolbox','matlab','imagesci');

ds = imageDatastore({location1,location2},'FileExtensions',{'.jpg','.tif','.png'});

Initialize the maximum average HSV values and the corresponding image data.

maxAvgH = 0;
maxAvgS = 0;
maxAvgV = 0;

dataH = 0;
dataS = 0;
dataV = 0;

For each image in the collection, read the image file and calculate the average HSV values across all
of the image pixels. If an average value is larger than that of a previous image, then record it as the
new maximum (maxAvgH, maxAvgS, or maxAvgV) and record the corresponding image data (dataH,
dataS, or dataV).

for i = 1:length(ds.Files)
 data = readimage(ds,i); % Read the ith image
 if ~ismatrix(data) % Only process 3-dimensional color data
 hsv = rgb2hsv(data); % Compute the HSV values from the RGB data

 h = hsv(:,:,1); % Extract the HSV values
 s = hsv(:,:,2);
 v = hsv(:,:,3);

 avgH = mean(h(:)); % Find the average HSV values across the image
 avgS = mean(s(:));
 avgV = mean(v(:));

 if avgH > maxAvgH % Check for new maximum average hue
 maxAvgH = avgH;
 dataH = data;
 end

 if avgS > maxAvgS % Check for new maximum average saturation
 maxAvgS = avgS;
 dataS = data;
 end

 if avgV > maxAvgV % Check for new maximum average brightness
 maxAvgV = avgV;
 dataV = data;
 end

12 Large Data

12-98

 end
end

View the images with the largest average hue, saturation, and brightness.

imshow(dataH,'InitialMagnification','fit');
title('Maximum Average Hue')

figure
imshow(dataS,'InitialMagnification','fit');
title('Maximum Average Saturation');

 Read and Analyze Image Files

12-99

figure
imshow(dataV,'InitialMagnification','fit');
title('Maximum Average Brightness');

12 Large Data

12-100

See Also
imageDatastore | mapreduce | tall

Related Examples
• “Tall Arrays for Out-of-Memory Data” on page 12-136
• “Getting Started with MapReduce” on page 12-3
• “Compute Maximum Average HSV of Images with MapReduce” on page 12-78

 Read and Analyze Image Files

12-101

Read and Analyze MAT-File with Key-Value Data
This example shows how to create a datastore for key-value pair data in a MAT-file that is the output
of mapreduce. Then, the example shows how to read all the data in the datastore and sort it. This
example assumes that the data in the MAT-file fits in memory.

Create a datastore from the sample file, mapredout.mat, using the datastore function. The sample
file contains unique keys representing airline carrier codes and corresponding values that represent
the number of flights operated by that carrier.

ds = datastore('mapredout.mat');

datastore returns a KeyValueDatastore. The datastore function automatically determines the
appropriate type of datastore to create.

Preview the data using the preview function. This function does not affect the state of the datastore.

preview(ds)

ans=1×2 table
 Key Value
 ______ _________

 {'AA'} {[14930]}

Read all of the data in ds using the readall function. The readall function returns a table with two
columns, Key and Value.

T = readall(ds)

T=29×2 table
 Key Value
 __________ _________

 {'AA' } {[14930]}
 {'AS' } {[2910]}
 {'CO' } {[8138]}
 {'DL' } {[16578]}
 {'EA' } {[920]}
 {'HP' } {[3660]}
 {'ML (1)'} {[69]}
 {'NW' } {[10349]}
 {'PA (1)'} {[318]}
 {'PI' } {[871]}
 {'PS' } {[83]}
 {'TW' } {[3805]}
 {'UA' } {[13286]}
 {'US' } {[13997]}
 {'WN' } {[15931]}
 {'AQ' } {[154]}
 ⋮

T contains all the airline and flight data from the datastore in the same order in which the data was
read. The table variables, Key and Value, are cell arrays.

Convert Value to a numeric array.

12 Large Data

12-102

T.Value = cell2mat(T.Value)

T=29×2 table
 Key Value
 __________ _____

 {'AA' } 14930
 {'AS' } 2910
 {'CO' } 8138
 {'DL' } 16578
 {'EA' } 920
 {'HP' } 3660
 {'ML (1)'} 69
 {'NW' } 10349
 {'PA (1)'} 318
 {'PI' } 871
 {'PS' } 83
 {'TW' } 3805
 {'UA' } 13286
 {'US' } 13997
 {'WN' } 15931
 {'AQ' } 154
 ⋮

Assign new names to the table variables.

T.Properties.VariableNames = {'Airline','NumFlights'};

Sort the data in T by the number of flights.

T = sortrows(T,'NumFlights','descend')

T=29×2 table
 Airline NumFlights
 _______ __________

 {'DL'} 16578
 {'WN'} 15931
 {'AA'} 14930
 {'US'} 13997
 {'UA'} 13286
 {'NW'} 10349
 {'CO'} 8138
 {'MQ'} 3962
 {'TW'} 3805
 {'HP'} 3660
 {'OO'} 3090
 {'AS'} 2910
 {'XE'} 2357
 {'EV'} 1699
 {'OH'} 1457
 {'FL'} 1263
 ⋮

View a summary of the sorted table.

summary(T)

 Read and Analyze MAT-File with Key-Value Data

12-103

Variables:

 Airline: 29x1 cell array of character vectors

 NumFlights: 29x1 double

 Values:

 Min 69
 Median 1457
 Max 16578

Reset the datastore to allow rereading of the data.

reset(ds)

See Also
KeyValueDatastore | datastore | mapreduce | tall

Related Examples
• “Tall Arrays for Out-of-Memory Data” on page 12-136
• “Getting Started with MapReduce” on page 12-3

12 Large Data

12-104

Read and Analyze Hadoop Sequence File
This example shows how to create a datastore for a Sequence file containing key-value data. Then,
you can read and process the data one block at a time. Sequence files are outputs of mapreduce
operations that use Hadoop.

Set the appropriate environment variable to the location where Hadoop is installed. In this case, set
the MATLAB_HADOOP_INSTALL environment variable.

setenv('MATLAB_HADOOP_INSTALL','/mypath/hadoop-folder')

hadoop-folder is the folder where Hadoop is installed and mypath is the path to that folder.

Create a datastore from the sample file, mapredout.seq, using the datastore function. The sample
file contains unique keys representing airline carrier codes and corresponding values that represent
the number of flights operated by that carrier.

ds = datastore('mapredout.seq')

ds =
 KeyValueDatastore with properties:

 Files: {
 ' ...\matlab\toolbox\matlab\demos\mapredout.seq'
 }
 ReadSize: 1 key-value pairs
 FileType: 'seq'

datastore returns a KeyValueDatastore. The datastore function automatically determines the
appropriate type of datastore to create.

Set the ReadSize property to six so that each call to read reads at most six key-value pairs.

ds.ReadSize = 6;

Read subsets of the data from ds using the read function in a while loop. For each subset of data,
compute the sum of the values. Store the sum for each subset in an array named sums. The while
loop executes until hasdata(ds) returns false.

sums = [];
while hasdata(ds)
 T = read(ds);
 T.Value = cell2mat(T.Value);
 sums(end+1) = sum(T.Value);
end

View the last subset of key-value pairs read.

T

T =

 Key Value
 ________ _____

 'WN' 15931
 'XE' 2357

 Read and Analyze Hadoop Sequence File

12-105

 'YV' 849
 'ML (1)' 69
 'PA (1)' 318

Compute the total number of flights operated by all carriers.

numflights = sum(sums)

numflights =

 123523

See Also
KeyValueDatastore | datastore | mapreduce | tall

Related Examples
• “Getting Started with MapReduce” on page 12-3
• “Tall Arrays for Out-of-Memory Data” on page 12-136

12 Large Data

12-106

Develop Custom Datastore
This topic shows how to implement a custom datastore for file-based data. Use this framework only
when writing your own custom datastore interface. Otherwise, for standard file formats, such as
images or spreadsheets, use an existing datastore from MATLAB. For more information, see “Getting
Started with Datastore” on page 12-84.

Overview
To build your custom datastore interface, use the custom datastore classes and objects. Then, use the
custom datastore to bring your data into MATLAB and leverage the MATLAB big data capabilities
such as tall, mapreduce, and Hadoop.

Designing your custom datastore involves inheriting from one or more abstract classes and
implementing the required methods. The specific classes and methods you need depend on your
processing needs.

Processing Needs Classes
Datastore for Serial Processing in MATLAB matlab.io.Datastore

See “Implement Datastore for Serial Processing”
on page 12-108

Datastore with support for Parallel Computing
Toolbox and MATLAB Parallel Server

matlab.io.Datastore and
matlab.io.datastore.Partitionable

See “Add Support for Parallel Processing” on
page 12-110

Datastore with support for Hadoop matlab.io.Datastore and
matlab.io.datastore.HadoopLocationBase
d

See “Add Support for Hadoop” on page 12-111
Datastore with support for shuffling samples in a
datastore in random order

matlab.io.Datastore and
matlab.io.datastore.Shuffleable

See “Add Support for Shuffling” on page 12-112
Datastore with support for writing files via
writeall

matlab.io.Datastore and
matlab.io.datastore.FileWritable

(Optionally, inheriting from
matlab.io.datastore.FoldersPropertyPro
vider adds support for a Folders property.)

See “Add Support for Writing Data” on page 12-
113

Start by implementing datastore for serial processing, and then add support for parallel processing,
Hadoop, shuffling, or writing.

 Develop Custom Datastore

12-107

Implement Datastore for Serial Processing
To implement a custom datastore named MyDatastore, create a script MyDatastore.m. The script
must be on the MATLAB path and should contain code that inherits from the appropriate class and
defines the required methods. The code for creating a datastore for serial processing in MATLAB
must:

• Inherit from the base class matlab.io.Datastore.
• Define these methods: hasdata, read, reset, and progress.
• Define additional properties and methods based on your data processing and analysis needs.

For a sample implementation, follow these steps.

Steps Implementation
Inherit from the base
class Datastore.

classdef MyDatastore < matlab.io.Datastore

 properties (Access = private)
 CurrentFileIndex double
 FileSet matlab.io.datastore.DsFileSet
 end

Add this property to
create a datastore on one
machine that works
seamlessly on another
machine or cluster that
possibly has a different
file system or operating
system.

Add methods to get and
set this property in the
methods section.

 % Property to support saving, loading, and processing of
 % datastore on different file system machines or clusters.
 % In addition, define the methods get.AlternateFileSystemRoots()
 % and set.AlternateFileSystemRoots() in the methods section.
 properties(Dependent)
 AlternateFileSystemRoots
 end

Implement the function
MyDatastore that
creates the custom
datastore.

 methods % begin methods section

 function myds = MyDatastore(location,altRoots)
 myds.FileSet = matlab.io.datastore.DsFileSet(location,...
 'FileExtensions','.bin', ...
 'FileSplitSize',8*1024);
 myds.CurrentFileIndex = 1;

 if nargin == 2
 myds.AlternateFileSystemRoots = altRoots;
 end

 reset(myds);
 end

Implement the hasdata
method.

 function tf = hasdata(myds)
 % Return true if more data is available.
 tf = hasfile(myds.FileSet);
 end

12 Large Data

12-108

Steps Implementation
Implement the read
method.

This method uses
MyFileReader, which is
a function that you must
create to read your
proprietary file format .

See “Create Function to
Read Your Proprietary File
Format” on page 12-110.

 function [data,info] = read(myds)
 % Read data and information about the extracted data.
 if ~hasdata(myds)
 error(sprintf(['No more data to read.\nUse the reset ',...
 'method to reset the datastore to the start of ' ,...
 'the data. \nBefore calling the read method, ',...
 'check if data is available to read ',...
 'by using the hasdata method.']))

 end

 fileInfoTbl = nextfile(myds.FileSet);
 data = MyFileReader(fileInfoTbl);
 info.Size = size(data);
 info.FileName = fileInfoTbl.FileName;
 info.Offset = fileInfoTbl.Offset;

 % Update CurrentFileIndex for tracking progress
 if fileInfoTbl.Offset + fileInfoTbl.SplitSize >= ...
 fileInfoTbl.FileSize
 myds.CurrentFileIndex = myds.CurrentFileIndex + 1 ;
 end

 end

Implement the reset
method.

 function reset(myds)
 % Reset to the start of the data.
 reset(myds.FileSet);
 myds.CurrentFileIndex = 1;
 end

Define the methods to get
and set the
AlternateFileSystemR
oots property.

You must reset the
datastore in the set
method.

 % Before defining these methods, add the AlternateFileSystemRoots
 % property in the properties section

 % Getter for AlternateFileSystemRoots property
 function altRoots = get.AlternateFileSystemRoots(myds)
 altRoots = myds.FileSet.AlternateFileSystemRoots;
 end

 % Setter for AlternateFileSystemRoots property
 function set.AlternateFileSystemRoots(myds,altRoots)
 try
 % The DsFileSet object manages the AlternateFileSystemRoots
 % for your datastore
 myds.FileSet.AlternateFileSystemRoots = altRoots;

 % Reset the datastore
 reset(myds);
 catch ME
 throw(ME);
 end
 end

 end

Implement the progress
method.

 methods (Hidden = true)
 function frac = progress(myds)
 % Determine percentage of data read from datastore
 if hasdata(myds)
 frac = (myds.CurrentFileIndex-1)/...
 myds.FileSet.NumFiles;
 else
 frac = 1;
 end
 end
 end

 Develop Custom Datastore

12-109

Steps Implementation
Implement the
copyElement method
when you use the
DsFileSet object as a
property in your
datastore.

 methods (Access = protected)
 % If you use the DsFileSet object as a property, then
 % you must define the copyElement method. The copyElement
 % method allows methods such as readall and preview to
 % remain stateless
 function dscopy = copyElement(ds)
 dscopy = copyElement@matlab.mixin.Copyable(ds);
 dscopy.FileSet = copy(ds.FileSet);
 end
 end

End the classdef
section.

end

Create Function to Read Your Proprietary File Format

The implementation of the read method of your custom datastore uses a function called
MyFileReader. You must create this function to read your custom or proprietary data. Build this
function using DsFileReader object and its methods. For instance, create a function that reads
binary files.

function data = MyFileReader(fileInfoTbl)
% create a reader object using the FileName
reader = matlab.io.datastore.DsFileReader(fileInfoTbl.FileName);

% seek to the offset
seek(reader,fileInfoTbl.Offset,'Origin','start-of-file');

% read fileInfoTbl.SplitSize amount of data
data = read(reader,fileInfoTbl.SplitSize);
end

Add Support for Parallel Processing
To add support for parallel processing with Parallel Computing Toolbox and MATLAB Parallel Server,
update your implementation code in MyDatastore.m to:

• Inherit from an additional class matlab.io.datastore.Partitionable.
• Define two additional methods: maxpartitions and partition.

For a sample implementation, follow these steps.

Steps Implementation
Update the classdef
section to inherit from the
Partitionable class.

classdef MyDatastore < matlab.io.Datastore & ...
 matlab.io.datastore.Partitionable
 .
 .
 .

12 Large Data

12-110

Steps Implementation
Add the definition for
partition to the
methods section.

 methods
 .
 .
 .
 function subds = partition(myds,n,ii)
 subds = copy(myds);
 subds.FileSet = partition(myds.FileSet,n,ii);
 reset(subds);
 end
 end

Add definition for
maxpartitions to the
methods section.

 methods (Access = protected)
 function n = maxpartitions(myds)
 n = maxpartitions(myds.FileSet);
 end
 end

End classdef. end

Add Support for Hadoop
To add support for Hadoop, update your implementation code in MyDatastore.m to:

• Inherit from an additional class matlab.io.datastore.HadoopLocationBased.
• Define two additional methods: getLocation and initializeDatastore.

For a sample implementation, follow these steps.

Steps Implementation
Update the classdef
section to inherit from the
HadoopLocationBased
class.

classdef MyDatastore < matlab.io.Datastore & ...
 matlab.io.datastore.HadoopLocationBased
 .
 .
 .

 Develop Custom Datastore

12-111

Steps Implementation
Add the definition for
getLocation,
initializeDatastore,
and isfullfile
(optional) to the methods
section.

 methods (Hidden = true)
 .
 .
 .

 function initializeDatastore(myds,hadoopInfo)
 import matlab.io.datastore.DsFileSet;
 myds.FileSet = DsFileSet(hadoopInfo,...
 'FileSplitSize',myds.FileSet.FileSplitSize);
 reset(myds);
 end

 function loc = getLocation(myds)
 loc = myds.FileSet;
 end

 % isfullfile method is optional
 function tf = isfullfile(myds)
 tf = isequal(myds.FileSet.FileSplitSize,'file');
 end

 end

End the classdef
section.

end

Add Support for Shuffling
To add support for shuffling, update your implementation code in MyDatastore.m to:

• Inherit from an additional class matlab.io.datastore.Shuffleable.
• Define the additional method shuffle.

For a sample implementation, follow these steps.

Steps Implementation
Update the classdef
section to inherit from the
Shuffleable class.

classdef MyDatastore < matlab.io.Datastore & ...
 matlab.io.datastore.Shuffleable
 .
 .
 .

12 Large Data

12-112

Steps Implementation
Add the definition for
shuffle to the existing
methods section.

 methods

 % previously defined methods
 .
 .
 .

 function dsNew = shuffle(ds)
 % dsNew = shuffle(ds) shuffles the files and the
 % corresponding labels in the datastore.

 % Create a copy of datastore
 dsNew = copy(ds);
 dsNew.Datastore = copy(ds.Datastore);
 fds = dsNew.Datastore;

 % Shuffle files and corresponding labels
 numObservations = dsNew.NumObservations;
 idx = randperm(numObservations);
 fds.Files = fds.Files(idx);
 dsNew.Labels = dsNew.Labels(idx);
 end

 end
End the classdef
section.

end

Add Support for Writing Data
To add support for writing data, update your implementation code in MyDatastore.m to follow these
requirements:

• Inherit from an additional class matlab.io.datastore.FileWritable.
• Initialize the properties SupportedOutputFormats and DefaultOutputFormat.
• Implement a write method if the datastore writes data to a custom format.
• Implement a getFiles method if the datastore does not have a Files property.
• Implement a getFolders method if the datastore does not have a Folders property.
• The output location is validated as a string. If your datastore requires further validation, you must

implement a validateOutputLocation method.
• If the datastore is meant for files that require multiple reads per file, then you must implement the

methods getCurrentFilename and currentFileIndexComparator.
• For Parquet file writing, the custom datastore must have a property named ReadSize with the

value file. If the datastore does not have this property, then it must implement the method
isSingleReadPerFile.

• Optionally, inherit from another class matlab.io.datastore.FoldersPropertyProvider to
add support for a Folders property (and thus the FolderLayout name-value pair of writeall).
If you do this, then you can use the populateFoldersFromLocation method in the datastore
constructor to populate the Folders property.

• To add support for the 'UseParallel' option of writeall, you must subclass from both
matlab.io.datastore.FileWritable and matlab.io.datastore.Partitionable and

 Develop Custom Datastore

12-113

implement a partition method in the subclass that supports the syntax
partition(ds,'Files',index).

For a sample implementation that inherits from matlab.io.datastore.FileWritable, follow
these steps.

Steps Implementation
Update the classdef
section to inherit from the
FileWritable class.

classdef MyDatastore < matlab.io.Datastore & ...
 matlab.io.datastore.FileWritable
 .
 .
 .

Initialize the properties
SupportedOutputForma
ts and
DefaultOutputFormat.
In this example, the
datastore supports all of
the output formats of
ImageDatastore, as well
as a custom format
"dcm", which is also
declared as the default
output format.

 properties (Constant)
 SupportedOutputFormats = ...
 [matlab.io.datastore.ImageDatastore.SupportedOutputFormats, "dcm"];
 DefaultOutputFormat = "dcm";
 end

Add definitions for
getFiles and
getFolders to the
existing methods section.
These methods are
required when the
datastore does not have
Files or Folders
properties.

 methods (Access = protected)
 function files = getFiles(ds)
 files = {'data/folder/file1', 'data/folder/file2',...};
 end
 function folders = getFolders(ds)
 folders = {'data/folder1/', 'data/folder2/',...};
 end
 end

Add a write method
when the datastore
intends to write data to a
custom format. In this
example, the method
switches between using a
custom write function for
"dcm" and the built-in
write function for known
formats.

 methods(Access = protected)
 function tf = write(myds, data, writeInfo, outFmt, varargin)
 if outFmt == "dcm" % use custom write fcn for dcm format
 dicomwrite(data, writeInfo.SuggestedOutputName, varargin{:});
 else % callback into built-in for known formats
 write@matlab.io.datastore.FileWritable(myds, data, ...
 writeInfo, outFmt, varargin{:});
 end
 tf = true;
 end
 end

End the classdef
section.

end

For a longer example class that inherits from both matlab.io.datastore.FileWritable and
matlab.io.datastore.FoldersPropertyProvider, see “Develop Custom Datastore for DICOM
Data” on page 12-124.

12 Large Data

12-114

Validate Custom Datastore
After following the instructions presented here, the implementation step of your custom datastore is
complete. Before using this custom datastore, qualify it using the guidelines presented in “Testing
Guidelines for Custom Datastores” on page 12-116.

See Also
matlab.io.Datastore | matlab.io.datastore.DsFileReader |
matlab.io.datastore.DsFileSet | matlab.io.datastore.FileWritable |
matlab.io.datastore.FoldersPropertyProvider |
matlab.io.datastore.HadoopLocationBased | matlab.io.datastore.Partitionable |
matlab.io.datastore.Shuffleable

More About
• “Developing Classes — Typical Workflow”
• “Create and Share Toolboxes”
• “Create Help for Classes”
• “Develop Custom Datastore for DICOM Data” on page 12-124

 Develop Custom Datastore

12-115

Testing Guidelines for Custom Datastores
All datastores that are derived from the custom datastore classes share some common behaviors. This
test procedure provides guidelines to test the minimal set of behaviors and functionalities that all
custom datastores should have. You will need additional tests to qualify any unique functionalities of
your custom datastore.

If you have developed your custom datastore based on instructions in “Develop Custom Datastore” on
page 12-107, then follow these test procedures to qualify your custom datastore. First perform the
unit tests, followed by the workflow tests:

• Unit tests qualify the datastore constructor and methods.
• Workflow tests qualify the datastore usage.

For all these test cases:

• Unless specified in the test description, assume that you are testing a nonempty datastore ds.
• Verify the test cases on the file extensions, file encodings, and data locations (like Hadoop) that

your custom datastore is designed to support.

Unit Tests
Construction

The unit test guidelines for the datastore constructor are as follows.

Test Case Description Expected Output
Check if your custom datastore constructor works with the
minimal required inputs.

Datastore object of your custom
datastore type with the minimal
expected properties and methods

Check if your datastore object ds has
matlab.io.Datastore as one of its superclasses.

Run this command:

isa(ds,'matlab.io.Datastore')

1 or true

Call your custom datastore constructor with the required
inputs and any supported input arguments and name-value
pair arguments.

Datastore object of your custom
datastore type with the minimal
expected properties and methods

read

Unit test guidelines for the read method

Test Case Description Expected Output
Call the read method on a datastore object ds.

t = read(ds);

Data from the beginning of the datastore

If you specify read size, then the size of
the returned data is equivalent to read
size.

12 Large Data

12-116

Test Case Description Expected Output
Call the read method again on the datastore object.

t = read(ds);

Data starting from the end point of the
previous read operation

If you specify read size, then the size of
the returned data is equivalent to read
size.

Continue calling the read method on the datastore object
in a while loop.

while(hasdata(ds))
 t = read(ds);
end

No errors

Correct data in the correct format

When data is available to read, check the info output (if
any) of the read method.

Call a datastore object ds.

[t,info] = read(ds);

No error

info contains the expected information

t contains the expected data

When no more data is available to read, call read on the
datastore object.

Either expected output or an error
message based on your custom
datastore implementation.

readall

Unit test guidelines for the readall method

Test Case Description Expected Output
Call the readall method on the datastore object. All data
Call the readall method on the datastore object, when
hasdata(ds) is false.

Read from the datastore until hasdata(ds) is false, and
then call the readall method.

while(hasdata(ds))
 t = read(ds);
end

readall(ds)

All data

hasdata

Unit test guidelines for the hasdata method

Test Case Description Expected Output
Call the hasdata method on the datastore object before
making any calls to read

true

Call the hasdata method on the datastore object after
making a few calls to read, but before all the data is read

true

 Testing Guidelines for Custom Datastores

12-117

Test Case Description Expected Output
When more data is available to read, call the readall
method, and then call the hasdata method.

true

When no more data is available to read, call the hasdata
method.

false

reset

Unit test guidelines for the reset method

Test Case Description Expected Output
Call the reset method on the datastore object before
making any calls to the read method.

Verify that the read method returns the appropriate data
after a call to the reset method.

reset(ds);
t = read(ds);

No errors

The read returns data from the
beginning of the datastore.

If you specify read size, then the size of
the returned data is equivalent to read
size.

When more data is available to read, call the reset
method after making a few calls to the read method.

Verify that the read method returns the appropriate data
after making a call to the reset method.

No errors

The read method returns data from the
beginning of the datastore.

If you specify read size, then the size of
the returned data is equivalent to read
size.

When more data is available to read, call the reset
method after making a call to the readall method.

Verify that the read method returns the appropriate data
after making a call to the reset method.

No errors

The read method returns data from the
beginning of the datastore.

If you specify read size, then the size of
the returned data is equivalent to read
size.

When no more data is available to read, call the reset
method on the datastore object and then call the read
method

Verify that read returns the appropriate data after a call
to the reset method.

No errors

The read method returns data from the
beginning of the datastore.

If you specify read size, then the size of
the returned data is equivalent to read
size.

progress

Unit test guidelines for the progress method

Test Case Description Expected Output
Call the progress method on the datastore object before
making any calls to the read method.

0 or an expected output based on your
custom datastore implementation.

12 Large Data

12-118

Test Case Description Expected Output
Call the progress method on the datastore object after
making a call to readall, but before making any calls to
read

readall(ds);
progress(ds)

0 or an expected output based on your
custom datastore implementation.

Call the progress method on the datastore object after
making a few calls to read and while more data is
available to read.

A fraction between 0 and 1 or an
expected output based on your custom
datastore implementation.

Call the progress method on the datastore object when
no more data is available to read.

1 or an expected output based on your
custom datastore implementation.

preview

Unit test guidelines for the preview method

Test Case Description Expected Output
Call preview on the datastore object before making any
calls to read.

The preview method returns the
expected data from the beginning of the
datastore, based on your custom
datastore implementation.

Call preview on the datastore object after making a few
calls to read and while more data is available to read.

The preview method returns the
expected data from the beginning of the
datastore, based on your custom
datastore implementation.

Call preview on the datastore object after making a call
to readall and while more data is available to read.

The preview method returns the
expected data from the beginning of the
datastore, based on your custom
datastore implementation.

Call preview on the datastore object after making a few
calls to read and a call to reset.

The preview method returns the
expected data from the beginning of the
datastore, based on your custom
datastore implementation.

Call preview on the datastore object when no more data
is available to read.

The preview method returns the
expected data from the beginning of the
datastore, based on your custom
datastore implementation.

Call preview after making a few calls to read method and
then call read again.

The read method returns data starting
from the end point of the previous read
operation.

If you specify read size, then the size of
the returned data is equivalent to read
size.

Call preview, and then call readall on the datastore. The readall method returns all the
data from the datastore.

 Testing Guidelines for Custom Datastores

12-119

Test Case Description Expected Output
While datastore has data available to read, call preview,
and then call hasdata.

The hasdata method returns true.

partition

Unit test guidelines for the partition method

Test Case Description Expected Output
Call partition on the datastore object ds with a valid
number of partitions and a valid partition index.

Call read on a partition of the datastore and verify the
data.

subds = partition(ds,n,index)
read(subds)

Verify that the partition is valid.

isequal(properties(ds),properties(subds))
isequal(methods(ds),methods(subds))

The partition method partitions the
datastore into n partitions and returns
the partition corresponding to the
specified index.

The returned partition subds must be a
datastore object of your custom
datastore.

The partitioned datastore subds must
have the same methods and properties
as the original datastore.

The isequal statement returns true.

Calling read on the partition returns
data starting from the beginning of the
partition.

If you specify read size, then the size of
the returned data is equivalent to read
size.

Call partition on the datastore object ds with number of
partitions specified as 1 and index of returned partition
specified as 1.

Verify the data returned by calling read and preview on a
partition of the partitioned datastore.

subds = partition(ds,1,1)
isequal(properties(ds),properties(subds))
isequal(methods(ds),methods(subds))
isequaln(read(subds),read(ds))
isequaln(preview(subds),preview(ds))

The partition subds must be a datastore
object of your custom datastore.

The partition subds must have the same
methods and properties as the original
datastore ds.

The isequal and isequaln statements
returns true.

Call partition on the partition subds with a valid
number of partitions and a valid partition index.

The repartitioning of a partition of the
datastore should work without errors.

initializeDatastore

If your datastore inherits from matlab.io.datastore.HadoopFileBased, then verify the
behavior of initializeDatastore using the guidelines in this table.

12 Large Data

12-120

Test Case Description Expected Output
Call initializeDatastore on the datastore object ds
with a valid info struct.

The info struct contains these fields:

• FileName
• Offset
• Size

FileName is of data type char and the fields Offset and
Size are of the data type double.

For example, initialize the info struct, and then call
initializeDatastore on the datastore object ds.

info = struct('FileName','myFileName.ext',...
 'Offset',0,'Size',500)
initializeDatastore(ds,info)

Verify the initialization by examining the properties of your
datastore object.

ds

The initializeDatastore method
initializes the custom datastore object
ds with the necessary information from
the info struct.

getLocation

If your datastore inherits from matlab.io.datastore.HadoopFileBased, then verify the
behavior of getLocation using these guidelines.

Test Case Description Expected Output
Call getLocation on the datastore object.

location = getLocation(ds)

Based on your custom datastore implementation, the
location output is either of these:

• List of files or directories
• a matlab.io.datastore.DsFileSet object

If location is a matlab.io.datastore.DsFileSet
object, then call resolve to verify the files in the
location output.

resolve(location)

The getLocation method returns the
location of files in Hadoop.

isfullfile

If your datastore inherits from matlab.io.datastore.HadoopFileBased, then verify the
behavior of isfullfile using these guidelines.

 Testing Guidelines for Custom Datastores

12-121

Test Case Description Expected Output
Call isfullfile on the datastore object. Based on your custom datastore

implementation, the isfullfile
method returns true or false.

Workflow Tests
Verify your workflow tests in the appropriate environment.

• If your datastore inherits only from matlab.io.Datastore, then verify all workflow tests in a
local MATLAB session.

• If your datastore has parallel processing support (inherits from
matlab.io.datastore.Partitionable), then verify your workflow tests in parallel execution
environments, such as Parallel Computing Toolbox and MATLAB Parallel Server.

• If your datastore has Hadoop support (inherits from
matlab.io.datastore.HadoopFileBased), then verify your workflow tests in a Hadoop
cluster.

Tall Workflow

Testing guidelines for the tall workflow

Test Case Description Expected Output
Create a tall array by calling tall on the datastore object
ds.

t = tall(ds)

The tall function returns an output
that is the same data type as the output
of the read method of the datastore.

For this test step, create a datastore object with data that
fits in your system memory. Then, create a tall array using
this datastore object.

t = tall(ds)

If your data is numeric, then apply an appropriate function
like the mean function to both the ds and t, then compare
the results.

If your data is of the data type string or categorical,
then apply the unique function on a column of ds and a
column of t, then compare the results.

Apply gather and verify the result.

For examples, see “Big Data Workflow Using Tall Arrays
and Datastores” (Parallel Computing Toolbox).

No errors

The function returns an output of the
correct data type (not of a tall data
type).

The function returns the same result
whether it is applied to ds or to t.

MapReduce Workflow

Testing guidelines for the MapReduce workflow

12 Large Data

12-122

Test Case Description Expected Output
Call mapreduce on the datastore object ds.

outds = mapreduce(ds,@mapper,@reducer)

For more information, see mapreduce.

To support the use of the mapreduce function, the read
method of your custom datastore must return both the
info and the data output arguments.

No error

The MapReduce operation returns the
expected result

Next Steps

Note This test procedure provides guidelines to test the minimal set of behaviors and functionalities
for custom datastores. Additional tests are necessary to qualify any unique functionalities of your
custom datastore.

After you complete the implementation and validation of your custom datastore, your custom
datastore is ready to use.

• To add help for your custom datastore implementation, see “Create Help for Classes”.
• To share your custom datastore with other users, see “Create and Share Toolboxes”.

See Also
matlab.io.Datastore | matlab.io.datastore.HadoopLocationBased |
matlab.io.datastore.Partitionable

More About
• “Develop Custom Datastore” on page 12-107
• “Create and Share Toolboxes”
• “Create Help for Classes”

 Testing Guidelines for Custom Datastores

12-123

Develop Custom Datastore for DICOM Data
This example shows how to develop a custom datastore that supports writing operations. The
datastore is named DICOMDatastore because it supports DICOM ® (Digital Imaging and
Communications in Medicine) data, which is an international standard for medical imaging
information.

Developing Custom Datastores
The topic “Develop Custom Datastore” on page 12-107 describes the general process for creating a
custom datastore, as well as the specific requirements to add different pieces of functionality. There
are a variety of superclasses you can subclass from depending on what pieces of functionality you
need (parallel evaluation, writing operations, shuffling, and so on). In particular, you can add support
for writing operations by subclassing from matlab.io.datastore.FileWritable. However, for
the broadest set of writing functionality, you must also subclass from
matlab.io.datastore.FoldersPropertyProvider, which adds a Folders property to the
datastore. The complete requirements to add writing support to a custom datastore are covered in
“Add Support for Writing Data” on page 12-113.

Class Definition
This table contains code and explanations for the DICOMDatastore class.

classdef DICOMDatastore < matlab.io.Datastore & ...
 matlab.io.datastore.FileWritable & ...
 matlab.io.datastore.FoldersPropertyProvider

Class Header

DICOMDatastore inherits from Datastore for
basic functionality, as well as from
FileWritable and
FoldersPropertyProvider to enable file
writing capabilities.

 properties
 Files matlab.io.datastore.FileSet
 end

Public Properties

DICOMDatastore defines a public Files
property that is a FileSet object.
DICOMDatastore inherits a Folders property
from FoldersPropertyProvider, so that
property does not need to be initialized.

 properties (Constant)
 SupportedOutputFormats = ...
 [matlab.io.datastore.ImageDatastore.SupportedOutputFormats, "dcm"];
 DefaultOutputFormat = "dcm";
 end

DICOMDatastore defines
SupportedOutputFormats and
DefaultOutputFormat as constant properties
with default values. "dcm" is a custom format for
DICOM data.

12 Large Data

12-124

https://www.dicomstandard.org/
https://www.dicomstandard.org/

 methods(Access = public)

 function myds = DICOMDatastore(location)
 % The class constructor to set properties of the datastore.
 myds.Files = matlab.io.datastore.FileSet(location, ...
 "IncludeSubfolders", true);
 populateFoldersFromLocation(myds,location);
 reset(myds);
 end

Public Methods

The public methods section defines common
datastore methods that the class uses to
manipulate data. Public methods are externally
accessible, so class users of DICOMDatastore
can call these methods (in addition to other
public methods inherited from the superclasses).

The constructor DICOMDatastore creates a new
DICOMDatastore object by setting values for the
Files and Folders properties.

• Use FileSet to set the value of the Files
property.

• Use the populateFoldersFromLocation
method of FoldersPropertyProvider to
set the value of the Folders property.

 function tf = hasdata(myds)
 %HASDATA Returns true if more data is available.
 % Return logical scalar indicating availability of data.
 % This method should be called before calling read. This
 % is an abstract method and must be implemented by the
 % subclasses. hasdata is used in conjunction with read to
 % read all the data within the datastore.
 tf = hasNextFile(myds.Files);
 end

The hasdata, read, reset, and progress
methods define the infrastructure for the
datastore to work with small chunks of data at a
time. These are abstract methods that must be
implemented by the subclass.

 function [data, info] = read(myds)
 %READ Read data and information about the extracted data.
 % Return the data extracted from the datastore in the
 % appropriate form for this datastore. Also return
 % information about where the data was extracted from in
 % the datastore. Both the outputs are required to be
 % returned from the read method and can be of any type.
 % info is recommended to be a struct with information
 % about the chunk of data read. data represents the
 % underlying class of tall, if tall is created on top of
 % this datastore. This is an abstract method and must be
 % implemented by the subclasses.

 % In this example, the read method reads data from the
 % datastore using a custom reader function, MyFileReader,
 % which takes the resolved filenames as input.
 if ~hasdata(myds)
 error("No more data to read.\nUse reset method to " ...
 + "reset the datastore to the start of the data. Before " ...
 + "calling the read method, check if data is available " ...
 + "to read by using the hasdata method.");
 end

 file = nextfile(myds.Files);
 try
 data = dicomread(file.Filename);
 catch ME
 error("%s has failed", file.FileName);
 end

 info.FileSize = size(data);
 info.Filename = file.Filename;
 end

 Develop Custom Datastore for DICOM Data

12-125

 function reset(myds)
 %RESET Reset to the start of the data.
 % Reset the datastore to the state where no data has been
 % read from it. This is an abstract method and must be
 % implemented by the subclasses.

 % In this example, the datastore is reset to point to the
 % first file (and first partition) in the datastore.
 reset(myds.Files);
 end
 function frac = progress(myds)
 %PROGRESS Percentage of consumed data between 0.0 and 1.0.
 % Return fraction between 0.0 and 1.0 indicating progress as a
 % double. The provided example implementation returns the
 % ratio of the index of the current file from FileSet
 % to the number of files in FileSet. A simpler
 % implementation can be used here that returns a 1.0 when all
 % the data has been read from the datastore, and 0.0
 % otherwise.
 %
 % See also matlab.io.Datastore, read, hasdata, reset, readall,
 % preview.
 frac = progress(myds.Files);
 end

 end
methods(Access = protected)

 function dsCopy = copyElement(myds)
 %COPYELEMENT Create a deep copy of the datastore
 % Create a deep copy of the datastore. We need to call
 % copy on the datastore's property FileSet because it is
 % a handle object. Creating a deep copy allows methods
 % such as readall and preview, which call the copy method,
 % to remain stateless.
 dsCopy = copyElement@matlab.mixin.Copyable(myds);
 dsCopy.Files = copy(myds.Files);
 end

Protected Methods

Protected methods redefine methods that were
inherited by the class, and they are only
accessible to DICOMDatastore. For more
information, see “Modify Inherited Methods”.

The protected copyElement method is required
whenever FileSet is used to define properties.
The copyElement method allows methods such
as readall and preview to remain stateless.

 function tf = write(myds, data, writeInfo, outFmt, varargin)
 if outFmt == "dcm"
 dicomwrite(data, writeInfo.SuggestedOutputName, varargin{:});
 else
 write@matlab.io.datastore.FileWritable(myds, data, ...
 writeInfo, outFmt, varargin{:});
 end
 tf = true;
 end

The protected write method writes out chunks
of data. Since DICOMDatastore supports
ImageDatastore formats as well as the custom
format "dcm", the write method uses different
functions to write the data depending on the
output format.

 function files = getFiles(myds)
 files = myds.Files.FileInfo.Filename;
 end

 end

The protected getFiles method is necessary
since DICOMDatastore uses FileSet objects
for the Files property. The Files property is
generally required to return a cellstr, so the
getFiles method uses the FileSet object to
generate a cellstr of the file paths.

end End the classdef section.

Expand for Class Code
classdef DICOMDatastore < matlab.io.Datastore & ...
 matlab.io.datastore.FileWritable & ...
 matlab.io.datastore.FoldersPropertyProvider
 properties
 Files matlab.io.datastore.FileSet
 end

12 Large Data

12-126

 properties (Constant)
 SupportedOutputFormats = ...
 [matlab.io.datastore.ImageDatastore.SupportedOutputFormats, "dcm"];
 DefaultOutputFormat = "dcm";
 end

 methods(Access = public)
 function myds = DICOMDatastore(location)
 % The class constructor to set properties of the datastore.
 myds.Files = matlab.io.datastore.FileSet(location, ...
 "IncludeSubfolders", true);
 populateFoldersFromLocation(myds,location);
 reset(myds);
 end

 function tf = hasdata(myds)
 %HASDATA Returns true if more data is available.
 % Return logical scalar indicating availability of data.
 % This method should be called before calling read. This
 % is an abstract method and must be implemented by the
 % subclasses. hasdata is used in conjunction with read to
 % read all the data within the datastore.
 tf = hasNextFile(myds.Files);
 end

 function [data, info] = read(myds)
 %READ Read data and information about the extracted data.
 % Return the data extracted from the datastore in the
 % appropriate form for this datastore. Also return
 % information about where the data was extracted from in
 % the datastore. Both the outputs are required to be
 % returned from the read method and can be of any type.
 % info is recommended to be a struct with information
 % about the chunk of data read. data represents the
 % underlying class of tall, if tall is created on top of
 % this datastore. This is an abstract method and must be
 % implemented by the subclasses.

 % In this example, the read method reads data from the
 % datastore using a custom reader function, MyFileReader,
 % which takes the resolved filenames as input.
 if ~hasdata(myds)
 error("No more data to read.\nUse reset method to " ...
 + "reset the datastore to the start of the data. Before " ...
 + "calling the read method, check if data is available " ...
 + "to read by using the hasdata method.");
 end

 file = nextfile(myds.Files);
 try
 data = dicomread(file.Filename);
 catch ME
 error("%s has failed", file.FileName);
 end

 info.FileSize = size(data);
 info.Filename = file.Filename;
 end

 function reset(myds)
 %RESET Reset to the start of the data.
 % Reset the datastore to the state where no data has been
 % read from it. This is an abstract method and must be
 % implemented by the subclasses.

 % In this example, the datastore is reset to point to the
 % first file (and first partition) in the datastore.
 reset(myds.Files);
 end

 function frac = progress(myds)
 %PROGRESS Percentage of consumed data between 0.0 and 1.0.
 % Return fraction between 0.0 and 1.0 indicating progress as a
 % double. The provided example implementation returns the
 % ratio of the index of the current file from FileSet
 % to the number of files in FileSet. A simpler
 % implementation can be used here that returns a 1.0 when all
 % the data has been read from the datastore, and 0.0
 % otherwise.
 %
 % See also matlab.io.Datastore, read, hasdata, reset, readall,

 Develop Custom Datastore for DICOM Data

12-127

 % preview.
 frac = progress(myds.Files);
 end
 end

 methods(Access = protected)
 function dsCopy = copyElement(myds)
 %COPYELEMENT Create a deep copy of the datastore
 % Create a deep copy of the datastore. We need to call
 % copy on the datastore's property FileSet because it is
 % a handle object. Creating a deep copy allows methods
 % such as readall and preview, which call the copy method,
 % to remain stateless.
 dsCopy = copyElement@matlab.mixin.Copyable(myds);
 dsCopy.Files = copy(myds.Files);
 end

 function tf = write(myds, data, writeInfo, outFmt, varargin)
 if outFmt == "dcm"
 dicomwrite(data, writeInfo.SuggestedOutputName, varargin{:});
 else
 write@matlab.io.datastore.FileWritable(myds, data, ...
 writeInfo, outFmt, varargin{:});
 end
 tf = true;
 end

 function files = getFiles(myds)
 files = myds.Files.FileInfo.Filename;
 end
 end
end

Using the DICOMDatastore Class
After you implement the DICOMDatastore class, you can use the constructor to create a new
DICOMDatastore object that references the location of a set of DICOM files. For example, if you
have DICOM files in the folder C:\Data\DICOM\series-000001\:

ds = DICOMDatastore("C:\Data\DICOM\series-000001")

ds =

 DICOMDatastore with properties:

 Files: [1×1 matlab.io.datastore.FileSet]
 SupportedOutputFormats: ["png" "jpg" "jpeg" "tif" "tiff" "dcm"]
 DefaultOutputFormat: "dcm"
 Folders: {'C:\Data\DICOM\series-000001'}

Class users of DICOMDatastore have access to these public methods:

methods(ds)

Methods for class DICOMDatastore:

DICOMDatastore copy isPartitionable preview read reset writeall
combine hasdata isShuffleable progress readall transform

Methods of DICOMDatastore inherited from handle.

In particular, with support for writeall, you can write the files to a new location:

writeall(ds,"C:\Data2\DICOM\")

This command creates copies of the datastore files in the folder C:\Data2\DICOM\series-000001.

For general information on authoring classes in MATLAB, see “Classes”.

12 Large Data

12-128

See Also
matlab.io.Datastore | matlab.io.datastore.FileWritable |
matlab.io.datastore.FoldersPropertyProvider

More About
• “Develop Custom Datastore” on page 12-107
• “Testing Guidelines for Custom Datastores” on page 12-116

 Develop Custom Datastore for DICOM Data

12-129

Set Up Datastore for Processing on Different Machines or
Clusters

You can create and save a datastore on a platform that loads and works seamlessly on a different
platform by setting up the 'AlternateFileSystemRoots' property of the datastore. Use this
property when:

• You create a datastore on a local machine, and need to access and process the data on another
machine (possibly running a different operating system).

• You process your datastore with parallel and distributed computing involving different platforms,
cloud or cluster machines.

This example demonstrates the use of the 'AlternateFileSystemRoots' property for
TabularTextDatastore. However, you can use the same syntax for any of these datastores:
SpreadsheetDatastore, ImageDatastore, ParquetDatastore, FileDatastore,
KeyValueDatastore, and TallDatastore. To use the 'AlternateFileSystemRoots'
functionality for custom datastores, see matlab.io.datastore.DsFileSet and “Develop Custom
Datastore” on page 12-107.

Save Datastore and Load on Different File System Platform
Create a datastore on one file system that loads and works seamlessly on a different machine
(possibly of a different operating system). For example, create a datastore on a Windows machine,
save it, and then load it on a Linux machine.

First, before you create and save the datastore, identify the root paths for your data on the different
platforms. The root paths will differ based on the machine or file system. For instance, if you have
data on your local machine and a copy of the data on a cluster, then get the root paths for accessing
the data:

• "Z:\DataSet" for your local Windows machine.
• "/nfs-bldg001/DataSet" for your Linux cluster.

Then, associate these root paths by using the 'AlternateFileSystemRoots' parameter of the
datastore.

altRoots = ["Z:\DataSet","/nfs-bldg001/DataSet"];
ds = tabularTextDatastore('Z:\DataSet','AlternateFileSystemRoots',altRoots);

Examine the Files property of datastore. In this instance, the Files property contains the location
of your data as accessed by your Windows machine.

ds.Files

ans =

 5×1 cell array

 {'Z:\DataSet\datafile01.csv'}
 {'Z:\DataSet\datafile02.csv'}
 {'Z:\DataSet\datafile03.csv'}
 {'Z:\DataSet\datafile04.csv'}
 {'Z:\DataSet\datafile05.csv'}

12 Large Data

12-130

Save the datastore.

save ds_saved_on_Windows.mat ds

Load the datastore on a Linux platform and examine the Files property. Since the root path
'Z:\DataSet' is not accessible on the Linux cluster, at load time, the datastore function
automatically updates the root paths based on the values specified in the
'AlternateFileSystemRoots' parameter. The Files property of the datastore now contains the
updated root paths for your data on the Linux cluster.

load ds_saved_on_Windows.mat
ds.Files

ans =

 5×1 cell array

 {'/nfs-bldg001/DataSet/datafile01.csv'}
 {'/nfs-bldg001/DataSet/datafile02.csv'}
 {'/nfs-bldg001/DataSet/datafile03.csv'}
 {'/nfs-bldg001/DataSet/datafile04.csv'}
 {'/nfs-bldg001/DataSet/datafile05.csv'}

You can now process and analyze this datastore on your Linux machine.

Process Datastore Using Parallel and Distributed Computing
To process your datastore with parallel and distributed computing that involves different platforms,
cloud or cluster machines, you must predefine the 'AlternateFileSystemRoots' parameter. This
example demonstrates how to create a datastore on your local machine, analyze a small portion of the
data, and then use Parallel Computing Toolbox and MATLAB Parallel Server to scale up the analysis
to the entire dataset.

Create a datastore and assign a value to the 'AlternateFileSystemRoots' property. To set the
value for the 'AlternateFileSystemRoots' property, identify the root paths for your data on the
different platforms. The root paths differ based on the machine or file system. For example, identify
the root paths for data access from your machine and your cluster:

• "Z:\DataSet" from your local Windows Machine.
• "/nfs-bldg001/DataSet" from the MATLAB Parallel Server Linux Cluster.

Then, associate these root paths using the AlternateFileSystemRoots property.
altRoots = ["Z:\DataSet","/nfs-bldg001/DataSet"];
ds = tabularTextDatastore('Z:\DataSet','AlternateFileSystemRoots',altRoots);

Analyze a small portion of the data on your local machine. For instance, get a partitioned subset of
the data, clean the data by removing any missing entries, and examine a plot of the variables.

tt = tall(partition(ds,100,1));
summary(tt);
% analyze your data
tt = rmmissing(tt);
plot(tt.MyVar1,tt.MyVar2)

 Set Up Datastore for Processing on Different Machines or Clusters

12-131

Scale up your analysis to the entire dataset by using MATLAB Parallel Server cluster (Linux cluster).
For instance, start a worker pool using the cluster profile, and then perform analysis on the entire
dataset by using parallel and distributed computing capabilities.

parpool('MyMjsProfile')
tt = tall(ds);
summary(tt);
% analyze your data
tt = rmmissing(tt);
plot(tt.MyVar1,tt.MyVar2)

See Also
FileDatastore | ImageDatastore | KeyValueDatastore | SpreadsheetDatastore |
TabularTextDatastore | TallDatastore | datastore

More About
• “Getting Started with Datastore” on page 12-84
• “Work with Remote Data” on page 12-91

12 Large Data

12-132

Apache Parquet Data Type Mappings
MATLAB represents column-oriented data with tables and timetables. Each variable in a table or
timetable can have a different data type and any number of columns. Column vectors are the most
common shape of table and timetable variables.

The Apache™ Parquet file format is used for column-oriented heterogeneous data. Similar to MATLAB
tables and timetables, each of the columns in a Parquet file can have different data types.

Despite their similarity, the permitted data types in MATLAB tables and timetables do not always map
perfectly to the permitted data types in Parquet files. In some cases, it is necessary for MATLAB to
perform data type conversions to retain information in the data (such as missing values). This
conversion can sometimes result in a loss of precision in the data.

In general, MATLAB tables and timetables have these behaviors when they are converted to Parquet
files:

• Table properties set on the original table are not saved.
• Table row names or timetable row times are converted into a new table variable before being

written.
• When reading a variable name from a Parquet file, invalid table variable names are converted to

valid table variable names.

The following tables summarize the representable data types in MATLAB tables and timetables, as
well as how those variables are represented in Parquet files. These data type mappings can go in both
directions (MATLAB → Parquet and Parquet → MATLAB), unless otherwise noted. Parquet files use a
small number of primitive (or physical) data types. The logical types extend the physical types by
specifying how they should be interpreted. Parquet data types not covered here are not supported for
reading from or writing to Parquet files (JSON, BSON, binary, and so on).

Numeric Data Types
MATLAB Table or
Timetable
Variable Type

Apache Parquet Data Type Notes
Physical Type Logical Type

double DOUBLE NONE MATLAB converts any missing
floating-point numbers in a Parquet
file into NaN values.

single FLOAT NONE

int8 INT32 INT_8 When reading a Parquet file, if an
array with integral type contains
missing values, then the array is
converted into the MATLAB double
data type instead of an integer data
type. The missing values are set to
NaN.

For 64-bit integers, this conversion
can result in truncation of values that
are larger in magnitude than
flintmax.

uint8 UINT_8
int16 INT_16
uint16 UINT_16
int32 NONE
uint32 UINT_32
int64 INT64 NONE
uint64 UINT_64

 Apache Parquet Data Type Mappings

12-133

MATLAB Table or
Timetable
Variable Type

Apache Parquet Data Type Notes
Physical Type Logical Type

logical BOOLEAN NONE When reading a Parquet file, if an
array with BOOLEAN type contains
missing values, then the array is
converted into the MATLAB double
data type instead of the logical
data type. The missing values are set
to NaN.

Text Data Types
MATLAB Table or
Timetable Variable
Type

Apache Parquet Data Type Notes
Physical Type Logical Type

categorical BYTE_ARRAY UTF8 Categorical arrays are
converted into string
arrays when written to
Parquet files. Any
<undefined>
categorical values are
converted to
<missing> strings
before being written.

string string, char, and
cellstr are all
mapped to the same
Parquet data type, and
that data type is always
read into MATLAB as a
string array.

char
cellstr (cell array of
character vectors)

Date and Time Data Types
MATLAB Table or
Timetable Variable
Type

Apache Parquet Data Type Notes
Physical Type Logical Type

datetime INT32 DATE MATLAB datetime
arrays written to a
Parquet file use
TIMESTAMP_MICROS
format and have
precision truncated to 1
microsecond. Display
format settings are not
saved.

INT64 TIMESTAMP_MILLIS
TIMESTAMP_MICROS

duration INT32 TIME_MILLIS MATLAB duration
arrays written to a

12 Large Data

12-134

MATLAB Table or
Timetable Variable
Type

Apache Parquet Data Type Notes
Physical Type Logical Type

INT64 Parquet file use
TIME_MICROS format
and have precision
truncated to 1
microsecond. Display
format settings are not
saved.

TIME_MICROS

See Also
parquetread | parquetwrite | write

 Apache Parquet Data Type Mappings

12-135

Tall Arrays for Out-of-Memory Data
Tall arrays are used to work with out-of-memory data that is backed by a datastore. Datastores
enable you to work with large data sets in small blocks that individually fit in memory, instead of
loading the entire data set into memory at once. Tall arrays extend this capability to enable you to
work with out-of-memory data using common functions.

What is a Tall Array?
Since the data is not loaded into memory all at once, tall arrays can be arbitrarily large in the first
dimension (that is, they can have any number of rows). Instead of writing special code that takes into
account the huge size of the data, such as with techniques like MapReduce, tall arrays let you work
with large data sets in an intuitive manner that is similar to the way you would work with in-memory
MATLAB arrays. Many core operators and functions work the same with tall arrays as they do with in-
memory arrays. MATLAB works with small blocks of the data at a time, handling all of the data
chunking and processing in the background, so that common expressions, such as A+B, work with big
data sets.

Benefits of Tall Arrays
Unlike in-memory arrays, tall arrays typically remain unevaluated until you request that the
calculations be performed using the gather function. This deferred evaluation allows you to work
quickly with large data sets. When you eventually request output using gather, MATLAB combines
the queued calculations where possible and takes the minimum number of passes through the data.
The number of passes through the data greatly affects execution time, so it is recommended that you
request output only when necessary.

Note Since gather returns results as in-memory MATLAB arrays, standard memory considerations
apply. MATLAB might run out of memory if the result returned by gather is too large.

Creating Tall Tables
Tall tables are like in-memory MATLAB tables, except that they can have any number of rows. To
create a tall table from a large data set, you first need to create a datastore for the data. If the
datastore ds contains tabular data, then tall(ds) returns a tall table or tall timetable containing
the data. See “Datastore” for more information about creating datastores.

Create a spreadsheet datastore that points to a tabular file of airline flight data. For folders that
contain a collection of files, you can specify the entire folder location, or use the wildcard character,
'*.csv', to include multiple files with the same file extension in the datastore. Clean the data by
treating 'NA' values as missing data so that tabularTextDatastore replaces them with NaN
values. Also, set the format of a few text variables to %s so that tabularTextDatastore reads them
as cell arrays of character vectors.
ds = tabularTextDatastore('airlinesmall.csv');
ds.TreatAsMissing = 'NA';
ds.SelectedFormats{strcmp(ds.SelectedVariableNames,'TailNum')} = '%s';
ds.SelectedFormats{strcmp(ds.SelectedVariableNames,'CancellationCode')} = '%s';

Create a tall table from the datastore. When you perform calculations on this tall table, the
underlying datastore reads blocks of data and passes them to the tall table to process. Neither the
datastore nor the tall table retain any of the underlying data.

12 Large Data

12-136

tt = tall(ds)

tt =

 M×29 tall table

 Year Month DayofMonth DayOfWeek DepTime CRSDepTime ArrTime CRSArrTime UniqueCarrier FlightNum TailNum ActualElapsedTime CRSElapsedTime AirTime ArrDelay DepDelay Origin Dest Distance TaxiIn TaxiOut Cancelled CancellationCode Diverted CarrierDelay WeatherDelay NASDelay SecurityDelay LateAircraftDelay
 ____ _____ __________ _________ _______ __________ _______ __________ _____________ _________ _______ _________________ ______________ _______ ________ ________ ______ _____ ________ ______ _______ _________ ________________ ________ ____________ ____________ ________ _____________ _________________

 1987 10 21 3 642 630 735 727 'PS' 1503 'NA' 53 57 NaN 8 12 'LAX' 'SJC' 308 NaN NaN 0 'NA' 0 NaN NaN NaN NaN NaN
 1987 10 26 1 1021 1020 1124 1116 'PS' 1550 'NA' 63 56 NaN 8 1 'SJC' 'BUR' 296 NaN NaN 0 'NA' 0 NaN NaN NaN NaN NaN
 1987 10 23 5 2055 2035 2218 2157 'PS' 1589 'NA' 83 82 NaN 21 20 'SAN' 'SMF' 480 NaN NaN 0 'NA' 0 NaN NaN NaN NaN NaN
 1987 10 23 5 1332 1320 1431 1418 'PS' 1655 'NA' 59 58 NaN 13 12 'BUR' 'SJC' 296 NaN NaN 0 'NA' 0 NaN NaN NaN NaN NaN
 1987 10 22 4 629 630 746 742 'PS' 1702 'NA' 77 72 NaN 4 -1 'SMF' 'LAX' 373 NaN NaN 0 'NA' 0 NaN NaN NaN NaN NaN
 1987 10 28 3 1446 1343 1547 1448 'PS' 1729 'NA' 61 65 NaN 59 63 'LAX' 'SJC' 308 NaN NaN 0 'NA' 0 NaN NaN NaN NaN NaN
 1987 10 8 4 928 930 1052 1049 'PS' 1763 'NA' 84 79 NaN 3 -2 'SAN' 'SFO' 447 NaN NaN 0 'NA' 0 NaN NaN NaN NaN NaN
 1987 10 10 6 859 900 1134 1123 'PS' 1800 'NA' 155 143 NaN 11 -1 'SEA' 'LAX' 954 NaN NaN 0 'NA' 0 NaN NaN NaN NaN NaN
 : : : : : : : : : : : : : : : : : : : : : : : : : : : : :
 : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

The display indicates that the number of rows, M, is currently unknown. MATLAB displays some of the
rows, and the vertical ellipses : indicate that more rows exist in the tall table that are not currently
being displayed.

Creating Tall Timetables
If the data you are working with has a time associated with each row of data, then you can use a tall
timetable to work on the data. For information on creating tall timetables, see Extended Capabilities
(timetable).

In this case, the tall table tt has times associated with each row, but they are broken down into
several table variables such as Year, Month, DayofMonth, and so on. Combine all of these pieces of
datetime information into a single new tall datetime variable Dates, which is based on the departure
times DepTime. Then, create a tall timetable using Dates as the row times. Since Dates is the only
datetime variable in the table, the table2timetable function automatically uses it for the row
times.

hrs = (tt.DepTime - mod(tt.DepTime,100))/100;
mins = mod(tt.DepTime,100);
tt.Dates = datetime(tt.Year, tt.Month, tt.DayofMonth, hrs, mins, 0);
tt(:,1:8) = [];
TT = table2timetable(tt)

TT =

 M×21 tall timetable

 Dates UniqueCarrier FlightNum TailNum ActualElapsedTime CRSElapsedTime AirTime ArrDelay DepDelay Origin Dest Distance TaxiIn TaxiOut Cancelled CancellationCode Diverted CarrierDelay WeatherDelay NASDelay SecurityDelay LateAircraftDelay
 ____________________ _____________ _________ _______ _________________ ______________ _______ ________ ________ ______ _____ ________ ______ _______ _________ ________________ ________ ____________ ____________ ________ _____________ _________________

 21-Oct-1987 06:42:00 'PS' 1503 'NA' 53 57 NaN 8 12 'LAX' 'SJC' 308 NaN NaN 0 'NA' 0 NaN NaN NaN NaN NaN
 26-Oct-1987 10:21:00 'PS' 1550 'NA' 63 56 NaN 8 1 'SJC' 'BUR' 296 NaN NaN 0 'NA' 0 NaN NaN NaN NaN NaN
 23-Oct-1987 20:55:00 'PS' 1589 'NA' 83 82 NaN 21 20 'SAN' 'SMF' 480 NaN NaN 0 'NA' 0 NaN NaN NaN NaN NaN
 23-Oct-1987 13:32:00 'PS' 1655 'NA' 59 58 NaN 13 12 'BUR' 'SJC' 296 NaN NaN 0 'NA' 0 NaN NaN NaN NaN NaN
 22-Oct-1987 06:29:00 'PS' 1702 'NA' 77 72 NaN 4 -1 'SMF' 'LAX' 373 NaN NaN 0 'NA' 0 NaN NaN NaN NaN NaN
 28-Oct-1987 14:46:00 'PS' 1729 'NA' 61 65 NaN 59 63 'LAX' 'SJC' 308 NaN NaN 0 'NA' 0 NaN NaN NaN NaN NaN
 08-Oct-1987 09:28:00 'PS' 1763 'NA' 84 79 NaN 3 -2 'SAN' 'SFO' 447 NaN NaN 0 'NA' 0 NaN NaN NaN NaN NaN

 Tall Arrays for Out-of-Memory Data

12-137

 10-Oct-1987 08:59:00 'PS' 1800 'NA' 155 143 NaN 11 -1 'SEA' 'LAX' 954 NaN NaN 0 'NA' 0 NaN NaN NaN NaN NaN
 : : : : : : : : : : : : : : : : : : : : : :
 : :

Creating Tall Arrays
When you extract a variable from a tall table or tall timetable, the result is a tall array of the
appropriate underlying data type. A tall array can be a numeric, logical, datetime, duration, calendar
duration, categorical, string, or cell array. Also, you can convert an in-memory array A into a tall array
with tA = tall(A). The in-memory array A must have one of the supported data types.

Extract the arrival delay ArrDelay from the tall timetable TT. This creates a new tall array variable
with underlying data type double.

a = TT.ArrDelay

a =

 M×1 tall double column vector

 8
 8
 21
 13
 4
 59
 3
 11
 :
 :

The classUnderlying and isaUnderlying functions are useful to determine the underlying data
type of a tall array.

Deferred Evaluation
One important aspect of tall arrays is that as you work with them, most operations are not performed
immediately. These operations appear to execute quickly, because the actual computation is deferred
until you specifically request that the calculations be performed. You can trigger evaluation of a tall
array with either the gather function (to bring the result into memory) or the write function (to
write the result to disk). This deferred evaluation is important because even a simple command like
size(X) executed on a tall array with a billion rows is not a quick calculation.

As you work with tall arrays, MATLAB keeps track of all of the operations to be carried out. This
information is then used to optimize the number of passes through the data that will be required
when you request output with the gather function. Thus, it is normal to work with unevaluated tall
arrays and request output only when you require it. For more information, see “Deferred Evaluation
of Tall Arrays” on page 12-142.

Calculate the mean and standard deviation of the arrival delay. Use these values to construct the
upper and lower thresholds for delays that are within one standard deviation of the mean. Notice that
the result of each operation indicates that the array has not been calculated yet.

m = mean(a,'omitnan')

12 Large Data

12-138

m =

 tall double

 ?

Preview deferred. Learn more.

s = std(a,'omitnan')

s =

 tall

 ?

Preview deferred. Learn more.

one_sigma_bounds = [m-s m m+s]

one_sigma_bounds =

 M×N×... tall array

 ? ? ? ...
 ? ? ? ...
 ? ? ? ...
 : : :
 : : :

Preview deferred. Learn more.

Evaluation with gather
The benefit of delayed evaluation is that when the time comes for MATLAB to perform the
calculations, it is often possible to combine the operations in such a way that the number of passes
through the data is minimized. So even if you perform many operations, MATLAB only makes extra
passes through the data when absolutely necessary.

The gather function forces evaluation of all queued operations and brings the resulting output into
memory. For this reason, you can think of gather as a bridge between tall arrays and in-memory
arrays. For example, you cannot control if or while loops using a tall logical array, but once the
array is evaluated with gather it becomes an in-memory logical array that you can use in these
contexts.

Since gather returns the entire result in MATLAB, you should make sure that the result will fit in
memory.

Use gather to calculate one_sigma_bounds and bring the result into memory. In this case,
one_sigma_bounds requires several operations to calculate, but MATLAB combines the operations
into one pass through the data. Since the data in this example is small, gather executes quickly.
However, the elimination of passes through the data becomes more valuable as the size of your data
increases.

sig1 = gather(one_sigma_bounds)

Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 1: Completed in 1.5 sec

 Tall Arrays for Out-of-Memory Data

12-139

Evaluation completed in 1.8 sec

sig1 =

 -23.4572 7.1201 37.6975

You can specify multiple inputs and outputs to gather if you want to evaluate several tall arrays at
once. This technique is faster than calling gather multiple times. For example, calculate the
minimum and maximum arrival delay. Computed separately, each value requires a pass through the
data to calculate for a total of two passes. However, computing both values simultaneously requires
only one pass through the data.

[max_delay, min_delay] = gather(max(a),min(a))

Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 1: Completed in 1.1 sec
Evaluation completed in 1.1 sec

max_delay =

 1014

min_delay =

 -64

These results indicate that on average, most flights arrive about 7 minutes late. But it is within one
standard deviation for a flight to be up to 37 minutes late or 23 minutes early. The quickest flight in
the data set arrived about an hour early, and the latest flight was delayed by many hours.

Saving, Loading, and Checkpointing Tall Arrays
The save function saves the state of a tall array, but does not copy any of the data. The
resulting .mat file is typically small. However, the original data files must be available in the same
location in order to subsequently use load.

The write function makes a copy of the data and saves the copy as a collection of files, which can
consume a large amount of disk space. write executes all pending operations on the tall array to
calculate the values prior to writing. Once write copies the data, it is independent of the original
raw data. Therefore, you can recreate the tall array from the written files even if the original raw
data is no longer available.

You can recreate the tall array from the written files by creating a new datastore that points to the
location where the files were written. This functionality enables you to create checkpoints or
snapshots of tall array data. Creating a checkpoint is a good way to save the results of preprocessing
your data, so that the data is in a form that is more efficient to load.

If you have a tall array TA, then you can write it to the folder location with the command:

write(location,TA);

Later, to reconstruct TA from the written files, use the commands:

ds = datastore(location);
TA = tall(ds);

12 Large Data

12-140

Additionally, you can use the write function to trigger evaluation of a tall array and write the results
to disk. This use of write is similar to gather, however, write does not bring any results into
memory.

Supporting Functions
Most core functions work the same way with tall arrays as they do with in-memory arrays. However,
in some cases the way that a function works with tall arrays is special or has limitations. You can tell
whether a function supports tall arrays, and if it has any limitations, by looking at the bottom of the
reference page for the function in the Extended Capabilities section (for an example, see
filloutliers).

For a filtered list of all MATLAB functions that support tall arrays, see Function List (Tall Arrays).

Tall arrays also are supported by several toolboxes, enabling you to do things like write machine
learning algorithms, deploy standalone apps, and run calculations in parallel or on a cluster. For more
information, see “Extend Tall Arrays with Other Products” on page 12-175.

See Also
datastore | gather | mapreducer | table | tall

More About
• “Index and View Tall Array Elements” on page 12-147
• “Visualization of Tall Arrays” on page 12-161

 Tall Arrays for Out-of-Memory Data

12-141

Deferred Evaluation of Tall Arrays
One of the differences between tall arrays and in-memory MATLAB arrays is that tall arrays typically
remain unevaluated until you request that calculations be performed. (The exceptions to this rule
include plotting functions like plot and histogram and some statistical fitting functions like fitlm,
which automatically evaluate tall array inputs.) While a tall array is in an unevaluated state, MATLAB
might not know its size, its data type, or the specific values it contains. However, you can still use
unevaluated arrays in your calculations as if the values were known. This allows you to work quickly
with large data sets instead of waiting for each command to execute. For this reason, it is
recommended that you use gather only when you require output.

MATLAB keeps track of all the operations you perform on unevaluated tall arrays as you enter them.
When you eventually call gather to evaluate the queued operations, MATLAB uses the history of
unevaluated commands to optimize the calculation by minimizing the number of passes through the
data. Used properly, this optimization can save huge amounts of execution time by eliminating
unnecessary passes through large data sets.

Display of Unevaluated Tall Arrays
The display of unevaluated tall arrays varies depending on how much MATLAB knows about the array
and its values. There are three pieces of information reflected in the display:

• Array size — Unknown dimension sizes are represented by the variables M or N in the display. If
no dimension sizes are known, then the size appears as MxNx.....

• Array data type — If the array has an unknown underlying data type, then its type appears as
tall array. If the type is known, it is listed as, for example, tall double array.

• Array values — If the array values are unknown, then they appear as ?. Known values are
displayed.

MATLAB might know all, some, or none of these pieces of information about a given tall array,
depending on the nature of the calculation.

For example, if the array has a known data type but unknown size and values, then the unevaluated
tall array might look like this:

M×N×... tall double array

 ? ? ? ...
 ? ? ? ...
 ? ? ? ...
 : : :
 : : :

If the type and relative size are known, then the display could be:

 1×N tall char array

 ? ? ? ...

If some of the data is known, then MATLAB displays the known values:

 100×3 tall double matrix

 0.8147 0.1622 0.6443

12 Large Data

12-142

 0.9058 0.7943 0.3786
 0.1270 0.3112 0.8116
 0.9134 0.5285 0.5328
 0.6324 0.1656 0.3507
 0.0975 0.6020 0.9390
 0.2785 0.2630 0.8759
 0.5469 0.6541 0.5502
 : : :
 : : :

Evaluation with gather
The gather function is used to evaluate tall arrays. gather accepts tall arrays as inputs and returns
in-memory arrays as outputs. For this reason, you can think of this function as a bridge between tall
arrays and in-memory arrays. For example, you cannot control if or while loop statements using a
tall logical array, but once the array is evaluated with gather it becomes an in-memory logical value
that you can use in these contexts.

gather performs all queued operations on a tall array and returns the entire result in memory. Since
gather returns results as in-memory MATLAB arrays, standard memory considerations apply.
MATLAB might run out of memory if the result returned by gather is too large.

Most of the time you can use gather to see the entire result of a calculation, particularly if the
calculation includes a reduction operation such as sum or mean. However, if the result is too large to
fit in memory, then you can use gather(head(X)) or gather(tail(X)) to perform the calculation
and look at only the first or last few rows of the result.

Resolve Errors with gather
If you enter an erroneous command and gather fails to evaluate a tall array variable, then you must
delete the variable from your workspace and recreate the tall array using only valid commands. This
is because MATLAB keeps track of all the operations you perform on unevaluated tall arrays as you
enter them. The only way to make MATLAB “forget” about an erroneous statement is to reconstruct
the tall array from scratch.

Example: Calculate Size of Tall Array
This example shows what an unevaluated tall array looks like, and how to evaluate the array.

Create a datastore for the data set airlinesmall.csv. Convert the datastore into a tall table and
then calculate the size.
varnames = {'ArrDelay', 'DepDelay', 'Origin', 'Dest'};
ds = tabularTextDatastore('airlinesmall.csv', 'TreatAsMissing', 'NA', ...
'SelectedVariableNames', varnames);
tt = tall(ds)

tt =

 M×4 tall table

 ArrDelay DepDelay Origin Dest
 ________ ________ ______ _____

 8 12 'LAX' 'SJC'

 Deferred Evaluation of Tall Arrays

12-143

 8 1 'SJC' 'BUR'
 21 20 'SAN' 'SMF'
 13 12 'BUR' 'SJC'
 4 -1 'SMF' 'LAX'
 59 63 'LAX' 'SJC'
 3 -2 'SAN' 'SFO'
 11 -1 'SEA' 'LAX'
 : : : :
 : : : :

s = size(tt)

s =

 1×2 tall double row vector

 ? ?

Preview deferred. Learn more.

Calculating the size of a tall array returns a small answer (a 1-by-2 vector), but the display indicates
that an entire pass through the data is still required to calculate the size of tt.

Use the gather function to fully evaluate the tall array and bring the results into memory. As the
command executes, there is a dynamic progress display in the command window that is particularly
helpful with long calculations.

Note Always ensure that the result returned by gather will be able to fit in memory. If you use
gather directly on a tall array without reducing its size using a function such as mean, then MATLAB
might run out of memory.

tableSize = gather(s)

Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 1: Completed in 0.42 sec
Evaluation completed in 0.48 sec

tableSize =

 123523 4

Example: Multi-pass Calculations with Tall Arrays
This example shows how several calculations can be combined to minimize the total number of passes
through the data.

Create a datastore for the data set airlinesmall.csv. Convert the datastore into a tall table.
varnames = {'ArrDelay', 'DepDelay', 'Origin', 'Dest'};
ds = tabularTextDatastore('airlinesmall.csv', 'TreatAsMissing', 'NA', ...
'SelectedVariableNames', varnames);
tt = tall(ds)

tt =

 M×4 tall table

12 Large Data

12-144

 ArrDelay DepDelay Origin Dest
 ________ ________ ______ _____

 8 12 'LAX' 'SJC'
 8 1 'SJC' 'BUR'
 21 20 'SAN' 'SMF'
 13 12 'BUR' 'SJC'
 4 -1 'SMF' 'LAX'
 59 63 'LAX' 'SJC'
 3 -2 'SAN' 'SFO'
 11 -1 'SEA' 'LAX'
 : : : :
 : : : :

Subtract the mean value of DepDelay from ArrDelay to create a new variable AdjArrDelay. Then
calculate the mean value of AdjArrDelay and subtract this mean value from AdjArrDelay. If these
calculations were all evaluated separately, then MATLAB would require four passes through the data.

AdjArrDelay = tt.ArrDelay - mean(tt.DepDelay,'omitnan');
AdjArrDelay = AdjArrDelay - mean(AdjArrDelay,'omitnan')

AdjArrDelay =

 M×1 tall double column vector

 ?
 ?
 ?
 :
 :

Preview deferred. Learn more.

Evaluate AdjArrDelay and view the first few rows. Because some calculations can be combined,
only three passes through the data are required.

gather(head(AdjArrDelay))

Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 3: Completed in 0.4 sec
- Pass 2 of 3: Completed in 0.39 sec
- Pass 3 of 3: Completed in 0.23 sec
Evaluation completed in 1.2 sec

ans =

 0.8799
 0.8799
 13.8799
 5.8799
 -3.1201
 51.8799
 -4.1201
 3.8799

 Deferred Evaluation of Tall Arrays

12-145

Summary of Behavior and Recommendations
1 Tall arrays remain unevaluated until you request output using gather.
2 Use gather in most cases to evaluate tall array calculations. If you believe the result of the

calculations might not fit in memory, then use gather(head(X)) or gather(tail(X)) instead.
3 Work primarily with unevaluated tall arrays and request output only when necessary. The more

queued calculations there are that are unevaluated, the more optimization MATLAB can do to
minimize the number of passes through the data.

4 If you enter an erroneous tall array command and gather fails to evaluate a tall array variable,
then you must delete the variable from your workspace and recreate the tall array using only
valid commands.

See Also
gather | write

More About
• “Tall Arrays for Out-of-Memory Data” on page 12-136

12 Large Data

12-146

Index and View Tall Array Elements
Tall arrays are too large to fit in memory, so it is common to view subsets of the data rather than the
entire array. This page shows techniques to extract and view portions of a tall array.

Extract Top Rows of Array
Use the head function to extract the first rows in a tall array. head does not force evaluation of the
array, so you must use gather to view the result.

tt = tall(table(randn(1000,1),randn(1000,1),randn(1000,1)))

tt =

 1,000×3 tall table

 Var1 Var2 Var3
 ________ ________ ________

 0.53767 0.6737 0.29617
 1.8339 -0.66911 1.2008
 -2.2588 -0.40032 1.0902
 0.86217 -0.6718 -0.3587
 0.31877 0.57563 -0.12993
 -1.3077 -0.77809 0.73374
 -0.43359 -1.0636 0.12033
 0.34262 0.55298 1.1363
 : : :
 : : :

t_head = gather(head(tt))

t_head =

 8×3 table

 Var1 Var2 Var3
 ________ ________ ________

 0.53767 0.6737 0.29617
 1.8339 -0.66911 1.2008
 -2.2588 -0.40032 1.0902
 0.86217 -0.6718 -0.3587
 0.31877 0.57563 -0.12993
 -1.3077 -0.77809 0.73374
 -0.43359 -1.0636 0.12033
 0.34262 0.55298 1.1363

Extract Bottom Rows of Array
Similarly, you can use the tail function to extract the bottom rows in a tall array.

t_tail = gather(tail(tt))

t_tail =

 Index and View Tall Array Elements

12-147

 8×3 table

 Var1 Var2 Var3
 ________ ________ ________

 0.64776 0.47349 -0.27077
 -0.31763 1.3656 0.43966
 1.769 -1.6378 -0.50614
 1.5106 2.0237 -0.18435
 0.16401 0.77779 0.402
 -0.28276 -0.5489 0.53923
 1.1522 -0.12601 -0.73359
 -1.1465 0.29958 -0.26837

Indexing Tall Arrays
All tall arrays support parentheses indexing. When you index a tall array using parentheses, such as
T(A) or T(A,B), the result is a new tall array containing only the specified rows and columns (or
variables).

Like most other operations on tall arrays, indexing expressions are not evaluated immediately. You
must use gather to evaluate the indexing operation. For more information, see “Deferred Evaluation
of Tall Arrays” on page 12-142.

You can perform these types of indexing in the first dimension of a tall array:

• B = A(:,…), where : selects all rows in A.
• B = A(idx,…), where idx is a tall numeric column vector or non-tall numeric vector.
• B = A(L,…), where L is a tall or non-tall logical array of the same height as A. For example, you

can use relational operators, such as tt(tt.Var1 < 10,:). When you index a tall array with a
tall logical array, there are a few requirements. Each of the tall arrays:

• Must be the same size in the first dimension.
• Must be derived from a single tall array.
• Must not have been indexed differently in the first dimension.

• B = A(P:D:Q,…) or B = A(P:Q,…), where P:D:Q and P:Q are valid colon indexing
expressions.

• head(tt,k) provides a shortcut for tt(1:k,:).
• tail(tt,k) provides a shortcut for tt(end-k:end,:).

Additionally, the number of subscripts you must specify depends on how many dimensions the array
has:

• For tall column vectors, you can specify a single subscript such as t(1:10).
• For tall row vectors, tall tables, and tall timetables, you must specify two subscripts.
• For tall arrays with two or more dimensions, you must specify two or more subscripts. For

example, if the array has three dimensions, you can use an expression such as tA(1:10,:,:) or
tA(1:10,:), but not linear indexing expressions such as tA(1:10) or tA(:).

12 Large Data

12-148

Tip The find function locates nonzero elements in tall column vectors, and can be useful to generate
a vector of indices for elements that meet particular conditions. For example, k = find(X<0)
returns the linear indices for all negative elements in X.

For example, use parentheses indexing to retrieve the first ten rows of tt.

tt(1:10,:)

ans =

 10×3 tall table

 Var1 Var2 Var3
 ________ ________ ________

 0.53767 0.6737 0.29617
 1.8339 -0.66911 1.2008
 -2.2588 -0.40032 1.0902
 0.86217 -0.6718 -0.3587
 0.31877 0.57563 -0.12993
 -1.3077 -0.77809 0.73374
 -0.43359 -1.0636 0.12033
 0.34262 0.55298 1.1363
 : : :
 : : :

Retrieve the last 5 values of the table variable Var1.

tt(end-5:end,'Var1')

ans =

 6×1 tall table

 Var1

 1.769
 1.5106
 0.16401
 -0.28276
 1.1522
 -1.1465

Retrieve every 100th row from the tall table.

tt(1:100:end,:)

ans =

 10×3 tall table

 Var1 Var2 Var3
 _________ _________ ________

 0.53767 0.6737 0.29617
 0.84038 -0.041663 -0.52093
 0.18323 1.3419 0.052993

 Index and View Tall Array Elements

12-149

 0.079934 -0.40492 -1.6163
 0.26965 -1.5144 0.98399
 -0.079893 -1.6848 -0.91182
 0.47586 -2.1746 1.1754
 1.9085 -0.79383 0.18343
 : : :
 : : :

Extract Tall Table Variables
The variables in a tall table or tall timetable are each tall arrays of different underlying data types.
Standard indexing methods of tables and timetables also apply to tall tables and tall timetables,
including the use of timerange, withtol, and vartype.

For example, index a tall table using dot notation T.VariableName to retrieve a single variable of
data as a tall array.

tt.Var1

ans =

 1,000×1 tall double column vector

 0.5377
 1.8339
 -2.2588
 0.8622
 0.3188
 -1.3077
 -0.4336
 0.3426
 :
 :

Use tab completion to look up the variables in a table if you cannot remember a precise variable
name. For example, type tt. and then press Tab. A menu pops up:

12 Large Data

12-150

You can also perform multiple levels of indexing. For example, extract the first 5 elements in the
variable Var2. In this case you must use one of the supported forms of indexing for tall arrays in the
parentheses.

tt.Var2(1:5)

ans =

 5×1 tall double column vector

 0.6737
 -0.6691
 -0.4003
 -0.6718
 0.5756

See “Access Data in Tables” or “Select Timetable Data by Row Time and Variable Type” for more
indexing information.

Concatenation with Tall Arrays
In order to concatenate two or more tall arrays, as in [A1 A2 A3 …], each of the tall arrays must be
derived from a single tall array and must not have been indexed differently in the first dimension.
Indexing operations include functions such as vertcat, splitapply, sort, cell2mat,
synchronize, retime, and so on.

For example, concatenate a few columns from tt to create a new tall matrix.

 Index and View Tall Array Elements

12-151

[tt.Var1 tt.Var2]

ans =

 1,000×2 tall double matrix

 0.5377 0.6737
 1.8339 -0.6691
 -2.2588 -0.4003
 0.8622 -0.6718
 0.3188 0.5756
 -1.3077 -0.7781
 -0.4336 -1.0636
 0.3426 0.5530
 : :
 : :

To combine tall arrays with different underlying datastores, it is recommended that you use write to
write the arrays (or calculation results) to disk, and then create a single new datastore referencing
those locations:

files = {'folder/path/to/file1','folder/path/to/file2'};
ds = datastore(files);

Assignment and Deletion with Tall Arrays
The same subscripting rules apply whether you use indexing to assign or delete elements from a tall
array. Deletion is accomplished by assigning one or more elements to the empty matrix, [].

“()” Assignment

You can assign elements into a tall array using the general syntax A(m,n,...) = B. The tall array A
must exist and have a nonempty second dimension. The first subscript m must be either a colon : or a
tall logical vector. With this syntax, B can be:

• Scalar
• A tall array derived from A(m,…) where m is the same subscript as above. For example,

A(m,1:10).
• An empty matrix, [] (for deletion)

“.” Assignment

For table indexing using the syntax A.Var1 = B, the array B must be a tall array with the
appropriate number of rows. Typically, B is derived from existing data in the tall table. Var1 can be
either a new or existing variable in the tall table.

You cannot assign tall arrays as variables in a regular table, even if the table is empty.

Extract Specified Number of Rows in Sorted Order
Sorting all of the data in a tall array can be an expensive calculation. Most often, only a subset of
rows at the beginning or end of a tall array is required to answer questions like “What is the first row
in this data by year?”

12 Large Data

12-152

The topkrows function returns a specified number of rows in sorted order for this purpose. For
example, use topkrows to extract the top 12 rows sorted in descending order by the second column.

t_top12 = gather(topkrows(tt,12,2))

Evaluating tall expression using the Local MATLAB Session:
Evaluation completed in 0.067 sec

t_top12 =

 12×3 table

 Var1 Var2 Var3
 ________ ______ ________

 -1.0322 3.5699 -1.4689
 1.3312 3.4075 0.17694
 -0.27097 3.1585 0.50127
 0.55095 2.9745 1.382
 0.45168 2.9491 -0.8215
 -1.7115 2.7526 -0.3384
 -0.21317 2.7485 1.9033
 -0.43021 2.7335 0.77616
 -0.59003 2.7304 0.67702
 0.47163 2.7292 0.92099
 -0.47615 2.683 -0.26113
 0.72689 2.5383 -0.57588

Summarize Tall Array Contents
The summary function returns useful information about each variable in a tall table or timetable, such
as the minimum and maximum values of numeric variables, and the number of occurrences of each
category for categorical variables.

For example, create a tall table for the outages.csv data set and display the summary information.
This data set contains numeric, datetime, and categorical variables.

fmts = {'%C' '%D' '%f' '%f' '%D' '%C'};
ds = tabularTextDatastore('outages.csv','TextscanFormats',fmts);
T = tall(ds);
summary(T)

Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 2: Completed in 0.16 sec
- Pass 2 of 2: Completed in 0.19 sec
Evaluation completed in 0.46 sec

Variables:

 Region: 1,468×1 categorical
 Values:

 MidWest 142
 NorthEast 557
 SouthEast 389
 SouthWest 26
 West 354

 Index and View Tall Array Elements

12-153

 OutageTime: 1,468×1 datetime
 Values:

 Min 2002-02-01 12:18
 Max 2014-01-15 02:41

 Loss: 1,468×1 double
 Values:

 Min 0
 Max 23418
 NumMissing 604

 Customers: 1,468×1 double
 Values:

 Min 0
 Max 5.9689e+06
 NumMissing 328

 RestorationTime: 1,468×1 datetime
 Values:

 Min 2002-02-07 16:50
 Max 2042-09-18 23:31
 NumMissing 29

 Cause: 1,468×1 categorical
 Values:

 attack 294
 earthquake 2
 energy emergency 188
 equipment fault 156
 fire 25
 severe storm 338
 thunder storm 201
 unknown 24
 wind 95
 winter storm 145

Return Subset of Calculation Results
Many of the examples on this page use gather to evaluate expressions and bring the results into
memory. However, in these examples it is also trivial that the results fit in memory, since only a few
rows are indexed at a time.

In cases where you are unsure if the result of an expression will fit in memory, it is recommended that
you use gather(head(X)) or gather(tail(X)). These commands still evaluate all of the queued
calculations, but return only a small amount of the result that is guaranteed to fit in memory.

If you are certain that the result of a calculation will not fit in memory, use write to evaluate the tall
array and write the results to disk instead.

12 Large Data

12-154

See Also
gather | head | table | tail | tall | topkrows

More About
• “Tall Arrays for Out-of-Memory Data” on page 12-136

 Index and View Tall Array Elements

12-155

Histograms of Tall Arrays
This example shows how to use histogram and histogram2 to analyze and visualize data contained
in a tall array.

Create Tall Table

Create a datastore using the airlinesmall.csv data set. Treat 'NA' values as missing data so that
they are replaced with NaN values. Select a subset of the variables to work with. Convert the
datastore into a tall table.

varnames = {'ArrDelay', 'DepDelay', 'Year', 'Month'};
ds = tabularTextDatastore('airlinesmall.csv', 'TreatAsMissing', 'NA', ...
 'SelectedVariableNames', varnames);
T = tall(ds)

T =

 Mx4 tall table

 ArrDelay DepDelay Year Month
 ________ ________ ____ _____

 8 12 1987 10
 8 1 1987 10
 21 20 1987 10
 13 12 1987 10
 4 -1 1987 10
 59 63 1987 10
 3 -2 1987 10
 11 -1 1987 10
 : : : :
 : : : :

Plot Histogram of Arrival Delays

Plot a histogram of the ArrDelay variable to examine the frequency distribution of arrival delays.

h = histogram(T.ArrDelay);

Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 2: Completed in 1.9 sec
- Pass 2 of 2: Completed in 0.69 sec
Evaluation completed in 4.5 sec

title('Flight arrival delays, 1987 - 2008')
xlabel('Arrival Delay (minutes)')
ylabel('Frequency')

12 Large Data

12-156

The arrival delay is most frequently a small number near 0, so these values dominate the plot and
make it difficult to see other details.

Adjust Bin Limits of Histogram

Restrict the histogram bin limits to plot only arrival delays between -50 and 150 minutes. After you
create a histogram object from a tall array, you cannot change any properties that would require
recomputing the bins, including BinWidth and BinLimits. Also, you cannot use morebins or
fewerbins to adjust the number of bins. In these cases, use histogram to reconstruct the
histogram from the raw data in the tall array.

figure
histogram(T.ArrDelay,'BinLimits',[-50,150])

Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 2: Completed in 0.84 sec
- Pass 2 of 2: Completed in 0.64 sec
Evaluation completed in 2 sec

title('Flight arrival delays between -50 and 150 minutes, 1987 - 2008')
xlabel('Arrival Delay (minutes)')
ylabel('Frequency')

 Histograms of Tall Arrays

12-157

From this plot, it appears that long delays might be more common than initially expected. To
investigate further, find the probability of an arrival delay that is one hour or greater.

Probability of Delays One Hour or Greater

The original histogram returned an object h that contains the bin values in the Values property and
the bin edges in the BinEdges property. You can use these properties to perform in-memory
calculations.

Determine which bins contain arrival delays of one hour (60 minutes) or more. Remove the last bin
edge from the logical index vector so that it is the same length as the vector of bin values.

idx = h.BinEdges >= 60;
idx(end) = [];

Use idx to retrieve the value associated with each selected bin. Add the bin values together, divide
by the total number of samples, and multiply by 100 to determine the overall probability of a delay
greater than or equal to one hour. Since the total number of samples is computed from the original
data set, use gather to explicitly evaluate the calculation and return an in-memory scalar.

N = numel(T.ArrDelay);
P = gather(sum(h.Values(idx))*100/N)

P = 4.4809

Overall, the odds of an arrival delay one hour or longer are about 4.5%.

12 Large Data

12-158

Plot Bivariate Histogram of Delays by Month

Plot a bivariate histogram of the arrival delays that are 60 minutes or longer by month. This plot
examines how seasonality affects arrival delay.

figure
h2 = histogram2(T.Month,T.ArrDelay,[12 50],'YBinLimits',[60 1100],...
 'Normalization','probability','FaceColor','flat');

Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 1: Completed in 1.5 sec
Evaluation completed in 1.8 sec
Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 1: Completed in 0.78 sec
Evaluation completed in 0.9 sec

title('Probability of arrival delays 1 hour or greater (by month)')
xlabel('Month (1-12)')
ylabel('Arrival Delay (minutes)')
zlabel('Probability')
xticks(1:12)
view(-126,23)

Delay Statistics by Month

Use the bivariate histogram object to calculate the probability of having an arrival delay one hour or
greater in each month, and the mean arrival delay for each month. Put the results in a table with the

 Histograms of Tall Arrays

12-159

variable P containing the probability information and the variable MeanByMonth containing the mean
arrival delay.

monthNames = {'Jan','Feb','Mar','Apr','May','Jun',...
 'Jul','Aug','Sep','Oct','Nov','Dec'}';
G = findgroups(T.Month);
M = splitapply(@(x) mean(x,'omitnan'),T.ArrDelay,G);
delayByMonth = table(monthNames, sum(h2.Values,2)*100, gather(M), ...
 'VariableNames',{'Month','P','MeanByMonth'})

Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 2: Completed in 0.81 sec
- Pass 2 of 2: Completed in 1.7 sec
Evaluation completed in 3.5 sec

delayByMonth=12×3 table
 Month P MeanByMonth
 _______ ______ ___________

 {'Jan'} 9.6497 8.5954
 {'Feb'} 7.7058 7.3275
 {'Mar'} 9.0543 7.5536
 {'Apr'} 7.2504 6.0081
 {'May'} 7.4256 5.2949
 {'Jun'} 10.35 10.264
 {'Jul'} 10.228 8.7797
 {'Aug'} 8.5989 7.4522
 {'Sep'} 5.4116 3.6308
 {'Oct'} 6.042 4.6059
 {'Nov'} 6.9002 5.2835
 {'Dec'} 11.384 10.571

The results indicate that flights in the holiday month of December have an 11.4% chance of being
delayed longer than an hour, but are delayed by 10.5 minutes on average. This is closely followed by
the summer months of June and July, where there is about a 10% chance of being delayed an hour or
more and the average delay is roughly 9 or 10 minutes.

See Also
histogram | histogram2 | tall

More About
• “Tall Arrays for Out-of-Memory Data” on page 12-136

12 Large Data

12-160

Visualization of Tall Arrays
Visualizing large data sets requires that the data is summarized, binned, or sampled in some way to
reduce the number of points that are plotted on the screen. In some cases, functions such as
histogram and pie bin the data to reduce the size, while other functions such as plot and
scatter use a more complex approach that avoids plotting duplicate pixels on the screen. For
problems where the pixel overlap is relevant to the analysis, the binscatter function also offers an
efficient way to visualize density patterns.

Visualizing tall arrays does not require the use of gather. MATLAB immediately evaluates and
displays visualizations of tall arrays. Currently, you can visualize tall arrays using the functions and
methods in this table.

Function Required Toolboxes Notes
plot — These functions plot in

iterations, progressively adding
to the plot as more data is read.
During the updates, a progress
indicator shows the proportion
of data that has been plotted.
Zooming and panning is
supported during the updating
process, before the plot is
complete. To stop the update
process, press the pause button
in the progress indicator.

scatter —
binscatter —

histogram —
histogram2 —
pie — For visualizing categorical data

only.
binScatterPlot Statistics and Machine Learning

Toolbox™
Figure contains a slider to
control the brightness and color
detail in the image. The slider
adjusts the value of the Gamma
image correction parameter.

ksdensity Statistics and Machine Learning
Toolbox

Produces a probability density
estimate for the data, evaluated
at 100 points for univariate
data, or 900 points for bivariate
data.

 Visualization of Tall Arrays

12-161

Function Required Toolboxes Notes
datasample Statistics and Machine Learning

Toolbox
datasample enables you to
extract a subsample of a tall
array in a statistically sound
way compared to simple
indexing. If the subset of data is
small enough to fit in memory,
then you can use plotting and
fitting functions on the subset
that do not directly support tall
arrays.

Tall Array Plotting Examples
This example shows several different ways you can visualize tall arrays.

Create a datastore for the airlinesmall.csv data set, which contains rows of airline flight data.
Select a subset of the table variables to work with and remove rows that contain missing values.

ds = tabularTextDatastore('airlinesmall.csv','TreatAsMissing','NA');
ds.SelectedVariableNames = {'Year','Month','ArrDelay','DepDelay','Origin','Dest'};
T = tall(ds);
T = rmmissing(T)

T =

 Mx6 tall table

 Year Month ArrDelay DepDelay Origin Dest
 ____ _____ ________ ________ _______ _______

 1987 10 8 12 {'LAX'} {'SJC'}
 1987 10 8 1 {'SJC'} {'BUR'}
 1987 10 21 20 {'SAN'} {'SMF'}
 1987 10 13 12 {'BUR'} {'SJC'}
 1987 10 4 -1 {'SMF'} {'LAX'}
 1987 10 59 63 {'LAX'} {'SJC'}
 1987 10 3 -2 {'SAN'} {'SFO'}
 1987 10 11 -1 {'SEA'} {'LAX'}
 : : : : : :
 : : : : : :

Pie Chart of Flights by Month

Convert the numeric Month variable into a categorical variable that reflects the name of the month.
Then plot a pie chart showing how many flights are in the data for each month of the year.

T.Month = categorical(T.Month,1:12,{'Jan','Feb','Mar','Apr','May','Jun','Jul','Aug','Sep','Oct','Nov','Dec'})

T =

 Mx6 tall table

 Year Month ArrDelay DepDelay Origin Dest
 ____ _____ ________ ________ _______ _______

12 Large Data

12-162

 1987 Oct 8 12 {'LAX'} {'SJC'}
 1987 Oct 8 1 {'SJC'} {'BUR'}
 1987 Oct 21 20 {'SAN'} {'SMF'}
 1987 Oct 13 12 {'BUR'} {'SJC'}
 1987 Oct 4 -1 {'SMF'} {'LAX'}
 1987 Oct 59 63 {'LAX'} {'SJC'}
 1987 Oct 3 -2 {'SAN'} {'SFO'}
 1987 Oct 11 -1 {'SEA'} {'LAX'}
 : : : : : :
 : : : : : :

pie(T.Month)

Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 2: Completed in 1.3 sec
- Pass 2 of 2: Completed in 1.1 sec
Evaluation completed in 3 sec

Histogram of Delays

Plot a histogram of the arrival delays for each flight in the data. Since the data has a long tail, limit
the plotting area using the BinLimits name-value pair.

histogram(T.ArrDelay,'BinLimits',[-50 150])

Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 2: Completed in 2.4 sec

 Visualization of Tall Arrays

12-163

- Pass 2 of 2: Completed in 0.76 sec
Evaluation completed in 4 sec

Scatter Plot of Delays

Plot a scatter plot of arrival and departure delays. You can expect a strong correlation between these
variables since flights that leave late are also likely to arrive late.

When operating on tall arrays, the plot, scatter, and binscatter functions plot the data in
iterations, progressively adding to the plot as more data is read. During the updates the top of the
plot has a progress indicator showing how much data has been plotted. Zooming and panning is
supported during the updates before the plot is complete.

scatter(T.ArrDelay,T.DepDelay)
xlabel('Arrival Delay')
ylabel('Departure Delay')
xlim([-140 1000])
ylim([-140 1000])

12 Large Data

12-164

The progress bar also includes a Pause/Resume button. Use the button to stop the plot updates
early once enough data is displayed.

Fit Trend Line

Use the polyfit and polyval functions to overlay a linear trend line on the plot of arrival and
departure delays.

hold on
p = polyfit(T.ArrDelay,T.DepDelay,1);
x = sort(T.ArrDelay,1);
yp = polyval(p,x);
plot(x,yp,'r-')
hold off

 Visualization of Tall Arrays

12-165

Visualize Density

The scatter plot of points is helpful up to a certain point, but it can be hard to decipher information
from the plot if the points overlap extensively. In that case, it helps to visualize the density of points in
the plot to spot trends.

Use the binscatter function to visualize the density of points in the plot of arrival and departure
delays.

binscatter(T.ArrDelay,T.DepDelay,'XLimits',[-100 1000],'YLimits',[-100 1000])
xlim([-100 1000])
ylim([-100 1000])
xlabel('Arrival Delay')
ylabel('Departure Delay')

12 Large Data

12-166

Adjust the CLim property of the axes so that all bin values greater than 150 are colored the same.
This prevents a few bins with very large values from dominating the plot.

ax = gca;
ax.CLim = [0 150];

 Visualization of Tall Arrays

12-167

See Also
plot | polyfit | tall

More About
• “Tall Arrays for Out-of-Memory Data” on page 12-136

12 Large Data

12-168

Grouped Statistics Calculations with Tall Arrays
This example shows how to calculate grouped statistics of a tall timetable containing power outage
data. The example uses the grouptransform, groupsummary, and groupcounts functions to
calculate various quantities of interest, such as the most common power outage cause in each region.
Even though the raw data in this example only has about 1500 rows, you can use the techniques
presented here on much larger data sets because no assumptions are made about the size of the data.

Create Datastore and Tall Timetable

The sample file, outages.csv, contains data representing electric utility outages in the United
States. The file contains six columns: Region, OutageTime, Loss, Customers, RestorationTime,
and Cause.

Create a datastore for the outages.csv file. Use the "TextScanFormats" option to specify the
kind of data each column contains: categorical ("%C"), floating-point numeric ("%f"), or datetime
("%D").

data_formats = ["%C","%D","%f","%f","%D","%C"];
ds = tabularTextDatastore("outages.csv","TextscanFormats",data_formats);

Create a tall table on top of the datastore, and convert the tall table into a tall timetable. The
OutageTime variable is used for the row times since it is the first datetime or duration variable in the
table.

T = tall(ds);
T = table2timetable(T)

T =

 Mx5 tall timetable

 OutageTime Region Loss Customers RestorationTime Cause
 __________ ______ ____ _________ _______________ _____

 ? ? ? ? ? ?
 ? ? ? ? ? ?
 ? ? ? ? ? ?
 : : : : : :
 : : : : : :

Replace Missing Data

Some of the rows in the RestorationTime variable have missing times, represented by NaT values.
Remove these rows from the table.

T = rmmissing(T,"DataVariables","RestorationTime");

For the numeric variables in the timetable, instead of removing rows with missing values, replace the
missing values with the mean value for each region.

T = grouptransform(T,"Region","meanfill",["Loss","Customers"]);

Use ismissing to confirm that no pieces of missing data remain in the table.

tf = any(ismissing(T),"all");
gather(tf)

 Grouped Statistics Calculations with Tall Arrays

12-169

Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 4: Completed in 0.47 sec
- Pass 2 of 4: Completed in 1.6 sec
- Pass 3 of 4: Completed in 0.87 sec
- Pass 4 of 4: Completed in 1.1 sec
Evaluation completed in 6.2 sec

ans = logical
 0

Preview Data

Now that the data does not contain missing values, bring a small number of rows into memory to get
an idea of what the data contains.

gather(head(T))

Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 1: Completed in 0.59 sec
Evaluation completed in 0.8 sec

ans=8×5 timetable
 OutageTime Region Loss Customers RestorationTime Cause
 ________________ _________ ______ __________ ________________ _______________

 2002-02-01 12:18 SouthWest 458.98 1.8202e+06 2002-02-07 16:50 winter storm
 2003-02-07 21:15 SouthEast 289.4 1.4294e+05 2003-02-17 08:14 winter storm
 2004-04-06 05:44 West 434.81 3.4037e+05 2004-04-06 06:10 equipment fault
 2002-03-16 06:18 MidWest 186.44 2.1275e+05 2002-03-18 23:23 severe storm
 2003-06-18 02:49 West 0 0 2003-06-18 10:54 attack
 2004-06-20 14:39 West 231.29 1.5354e+05 2004-06-20 19:16 equipment fault
 2002-06-06 19:28 West 311.86 1.5354e+05 2002-06-07 00:51 equipment fault
 2003-07-16 16:23 NorthEast 239.93 49434 2003-07-17 01:12 fire

Mean Power Outage Duration by Region

Determine the mean power outage duration in each region using groupsummary. First, create a new
variable OutageDuration in the table that contains the duration of each outage, found by
subtracting the outage time from the restoration time. In the call to groupsummary, specify:

• "Region" as the grouping variable
• "mean" as the computation method
• "OutageDuration" as the variable to operate on.

T.OutageDuration = T.RestorationTime - T.OutageTime;
times = groupsummary(T,"Region","mean","OutageDuration")

times =

 Mx3 tall table

 Region GroupCount mean_OutageDuration
 ______ __________ ___________________

 ? ? ?
 ? ? ?

12 Large Data

12-170

 ? ? ?
 : : :
 : : :

Change the display format of the duration results to be in days, and gather the results into memory.
The results show the mean outage duration in each region, as well as the number of reported outages
in each region.

times.mean_OutageDuration.Format = "d";
times = gather(times)

Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 2: Completed in 2.1 sec
- Pass 2 of 2: Completed in 1.6 sec
Evaluation completed in 4.9 sec

times=5×3 table
 Region GroupCount mean_OutageDuration
 _________ __________ ___________________

 MidWest 138 34.135 days
 NorthEast 548 24.21 days
 SouthEast 379 1.7013 days
 SouthWest 25 2.4799 days
 West 349 28.061 days

Most Common Power Outage Causes by Region

Determine how often each power outage cause occurs in each region. Use groupcounts with the
Cause and Region variables as grouping variables. Gather the results into memory.

causes = groupcounts(T,["Cause","Region"]);
causes = gather(causes)

Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 2: Completed in 0.47 sec
- Pass 2 of 2: Completed in 0.83 sec
Evaluation completed in 1.8 sec

causes=43×3 table
 Cause Region GroupCount
 ________________ _________ __________

 attack MidWest 12
 attack NorthEast 135
 attack SouthEast 19
 attack West 126
 earthquake NorthEast 1
 earthquake West 1
 energy emergency MidWest 19
 energy emergency NorthEast 29
 energy emergency SouthEast 79
 energy emergency SouthWest 7
 energy emergency West 46
 equipment fault MidWest 9
 equipment fault NorthEast 17
 equipment fault SouthEast 40
 equipment fault SouthWest 2

 Grouped Statistics Calculations with Tall Arrays

12-171

 equipment fault West 85
 ⋮

Each cause occurs several times in the table, so even though the table contains the correct data it is
not in the proper format to see how often each cause occurs in each region. To improve the
presentation of the data, unstack the GroupCount variable so that each column corresponds to a
region and each row corresponds to an outage cause.

RegionCauses = gather(unstack(causes,"GroupCount","Region"))

RegionCauses=10×6 table
 Cause MidWest NorthEast SouthEast SouthWest West
 ________________ _______ _________ _________ _________ ____

 attack 12 135 19 NaN 126
 earthquake NaN 1 NaN NaN 1
 energy emergency 19 29 79 7 46
 equipment fault 9 17 40 2 85
 fire NaN 5 3 NaN 17
 severe storm 30 139 132 6 22
 thunder storm 31 102 54 6 7
 unknown 4 10 3 NaN 4
 wind 16 40 13 3 22
 winter storm 17 70 36 1 19

Not all combinations of outage causes and regions are represented in the data, so the resulting table
contains some NaNs. Fill in the NaN values with zeros.

RegionCauses = fillmissing(RegionCauses,"constant",{"",0,0,0,0,0})

RegionCauses=10×6 table
 Cause MidWest NorthEast SouthEast SouthWest West
 ________________ _______ _________ _________ _________ ____

 attack 12 135 19 0 126
 earthquake 0 1 0 0 1
 energy emergency 19 29 79 7 46
 equipment fault 9 17 40 2 85
 fire 0 5 3 0 17
 severe storm 30 139 132 6 22
 thunder storm 31 102 54 6 7
 unknown 4 10 3 0 4
 wind 16 40 13 3 22
 winter storm 17 70 36 1 19

Worst Power Outages in Each Region

Calculate the broadest customer impact for each power outage in each region.

WorstOutages = groupsummary(T,["Region","Cause"],"max","Customers");
WorstOutages = gather(WorstOutages)

Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 2: Completed in 0.5 sec
- Pass 2 of 2: Completed in 0.89 sec
Evaluation completed in 1.9 sec

12 Large Data

12-172

WorstOutages=43×4 table
 Region Cause GroupCount max_Customers
 _________ ________________ __________ _____________

 MidWest attack 12 2.4403e+05
 MidWest energy emergency 19 5.0376e+05
 MidWest equipment fault 9 2.4403e+05
 MidWest severe storm 30 3.972e+06
 MidWest thunder storm 31 3.8233e+05
 MidWest unknown 4 3.0879e+06
 MidWest wind 16 2.8666e+05
 MidWest winter storm 17 7.7697e+05
 NorthEast attack 135 1.5005e+05
 NorthEast earthquake 1 0
 NorthEast energy emergency 29 1.5005e+05
 NorthEast equipment fault 17 1.667e+05
 NorthEast fire 5 4.5139e+05
 NorthEast severe storm 139 1.0735e+06
 NorthEast thunder storm 102 5.9689e+06
 NorthEast unknown 10 2.4983e+06
 ⋮

Combine the data in the Region and Cause variables into a single categorical variable by briefly
converting them into strings. Then, create a categorical histogram of the maximum number of
affected customers for each cause in each region.

WorstOutages.RegionCause = categorical(string(WorstOutages.Region)+" ("+string(WorstOutages.Cause)+")");
histogram("Categories",WorstOutages.RegionCause,"BinCounts",WorstOutages.max_Customers,...
 "DisplayOrder","descend")
ylabel("Max # Affected Customers")

 Grouped Statistics Calculations with Tall Arrays

12-173

See Also
findgroups | splitapply | tall

More About
• “Grouping Variables To Split Data”
• “Split Data into Groups and Calculate Statistics”
• “Split Table Data Variables and Apply Functions”

12 Large Data

12-174

Extend Tall Arrays with Other Products
Products Used: Statistics and Machine Learning Toolbox, Database Toolbox, Parallel Computing
Toolbox, MATLAB Parallel Server, MATLAB Compiler

Several toolboxes enhance the capabilities of tall arrays. These enhancements include writing
machine learning algorithms, integrating with big data systems, and deploying standalone apps.

Statistics and Machine Learning
Statistics and Machine Learning Toolbox enables you to perform advanced statistical calculations on
tall arrays. Capabilities include:

• K-means clustering
• Linear regression fitting
• Grouped statistics
• Classification

See “Analysis of Big Data with Tall Arrays” (Statistics and Machine Learning Toolbox) for more
information.

Control Where Your Code Runs
When you execute calculations on tall arrays, the default execution environment uses either the local
MATLAB session, or a local parallel pool if you have Parallel Computing Toolbox. Use the
mapreducer function to change the execution environment of tall arrays when using Parallel
Computing Toolbox, MATLAB Parallel Server, or MATLAB Compiler:

• Parallel Computing Toolbox — Run calculations in parallel using local or cluster workers to speed
up large tall array calculations. See “Use Tall Arrays on a Parallel Pool” (Parallel Computing
Toolbox) or “Process Big Data in the Cloud” (Parallel Computing Toolbox) for more information.

• MATLAB Parallel Server — Run tall array calculations on a cluster, including Apache Spark™
enabled Hadoop clusters. This can significantly reduce the execution time of very large
calculations. See “Use Tall Arrays on a Spark Enabled Hadoop Cluster” (Parallel Computing
Toolbox) for more information.

• MATLAB Compiler — Deploy MATLAB applications containing tall arrays as standalone apps on
Apache Spark. See “Spark Applications” (MATLAB Compiler) for more information.

One of the benefits of developing your algorithms with tall arrays is that you only need to write the
code once. You can develop your code locally, then use mapreducer to scale up and take advantage
of the capabilities offered by Parallel Computing Toolbox, MATLAB Parallel Server, or MATLAB
Compiler, without needing to rewrite your algorithm.

Note Each tall array is bound to a single execution environment when it is constructed using
tall(ds). If that execution environment is later modified or deleted, then the tall array becomes
invalid.

For this reason, each time you change the execution environment you must reconstruct the tall array.

 Extend Tall Arrays with Other Products

12-175

Work with Databases
Database Toolbox enables you to create a tall table from a DatabaseDatastore that is backed by
data in a database. For more information, see “Analyze Large Data in Database Using Tall Arrays”
(Database Toolbox).

Note DatabaseDatastore has these limitations:

• DatabaseDatastore must use the local MATLAB session as the execution environment. Set this
environment using the command mapreducer(0).

• Standalone applications containing tall arrays that use DatabaseDatastore cannot be deployed
against Apache Spark using MATLAB Compiler.

See Also
gcmr | mapreducer | tall

More About
• “Tall Arrays for Out-of-Memory Data” on page 12-136

12 Large Data

12-176

Analyze Big Data in MATLAB Using Tall Arrays
This example shows how to use tall arrays to work with big data in MATLAB®. You can use tall arrays
to perform a variety of calculations on different types of data that does not fit in memory. These
include basic calculations, as well as machine learning algorithms within Statistics and Machine
Learning Toolbox™.

This example operates on a small subset of data on a single computer, and then it then scales up to
analyze all of the data set. However, this analysis technique can scale up even further to work on data
sets that are so large they cannot be read into memory, or to work on systems like Apache Spark™.

Introduction to Tall Arrays

Tall arrays and tall tables are used to work with out-of-memory data that has any number of rows.
Instead of writing specialized code that takes into account the huge size of the data, tall arrays and
tables let you work with large data sets in a manner similar to in-memory MATLAB® arrays. The
difference is that tall arrays typically remain unevaluated until you request that the calculations be
performed.

This deferred evaluation enables MATLAB to combine the queued calculations where possible and
take the minimum number of passes through the data. Since the number of passes through the data
greatly affects execution time, it is recommended that you request output only when necessary.

Create datastore for Collection of Files

Creating a datastore enables you to access a collection of data. A datastore can process arbitrarily
large amounts of data, and the data can even be spread across multiple files in multiple folders. You
can create a datastore for most types of files, including a collection of tabular text files (demonstrated
here), spreadsheets, images, a SQL database (Database Toolbox™ required), Hadoop® sequence
files, and more.

Create a datastore for a .csv file containing airline data. Treat 'NA' values as missing so that
tabularTextDatastore replaces them with NaN values. Select the variables of interest, and specify
a categorical data type for the Origin and Dest variables. Preview the contents.

ds = tabularTextDatastore('airlinesmall.csv');
ds.TreatAsMissing = 'NA';
ds.SelectedVariableNames = {'Year','Month','ArrDelay','DepDelay','Origin','Dest'};
ds.SelectedFormats(5:6) = {'%C','%C'};
pre = preview(ds)

pre=8×6 table
 Year Month ArrDelay DepDelay Origin Dest
 ____ _____ ________ ________ ______ ____

 1987 10 8 12 LAX SJC
 1987 10 8 1 SJC BUR
 1987 10 21 20 SAN SMF
 1987 10 13 12 BUR SJC
 1987 10 4 -1 SMF LAX
 1987 10 59 63 LAX SJC
 1987 10 3 -2 SAN SFO
 1987 10 11 -1 SEA LAX

 Analyze Big Data in MATLAB Using Tall Arrays

12-177

Create Tall Array

Tall arrays are similar to in-memory MATLAB arrays, except that they can have any number of rows.
Tall arrays can contain data that is numeric, logical, datetime, duration, calendarDuration,
categorical, or strings. Also, you can convert any in-memory array to a tall array. (The in-memory
array A must be one of the supported data types.)

The underlying class of a tall array is based on the type of datastore that backs it. For example, if the
datastore ds contains tabular data, then tall(ds) returns a tall table containing the data.

tt = tall(ds)

tt =

 Mx6 tall table

 Year Month ArrDelay DepDelay Origin Dest
 ____ _____ ________ ________ ______ ____

 ? ? ? ? ? ?
 ? ? ? ? ? ?
 ? ? ? ? ? ?
 : : : : : :
 : : : : : :

The display indicates the underlying data type and includes the first several rows of data. The size of
the table displays as "Mx6" to indicate that MATLAB does not yet know how many rows of data there
are.

Perform Calculations on Tall Arrays

You can work with tall arrays and tall tables in a similar manner in which you work with in-memory
MATLAB arrays and tables.

One important aspect of tall arrays is that as you work with them, MATLAB does not perform most
operations immediately. These operations appear to execute quickly, because the actual computation
is deferred until you specifically request output. This deferred evaluation is important because even a
simple command like size(X) executed on a tall array with a billion rows is not a quick calculation.

As you work with tall arrays, MATLAB keeps track of all of the operations to be carried out and
optimizes the number of passes through the data. Thus, it is normal to work with unevaluated tall
arrays and request output only when you require it. MATLAB does not know the contents or size of
unevaluated tall arrays until you request that the array be evaluated and displayed.

Calculate the mean departure delay.

mDep = mean(tt.DepDelay,'omitnan')

mDep =

 tall double

 ?

Gather Results into Workspace

The benefit of deferred evaluation is that when the time comes for MATLAB to perform the
calculations, it is often possible to combine the operations in such a way that the number of passes

12 Large Data

12-178

through the data is minimized. So, even if you perform many operations, MATLAB only makes extra
passes through the data when absolutely necessary.

The gather function forces evaluation of all queued operations and brings the resulting output back
into memory. Since gather returns the entire result in MATLAB, you should make sure that the
result will fit in memory. For example, use gather on tall arrays that are the result of a function that
reduces the size of the tall array, such as sum, min, mean, and so on.

Use gather to calculate the mean departure delay and bring the answer into memory. This
calculation requires a single pass through the data, but other calculations might require several
passes through the data. MATLAB determines the optimal number of passes for the calculation and
displays this information at the command line.

mDep = gather(mDep)

Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 2: Completed in 1.3 sec
- Pass 2 of 2: Completed in 1.2 sec
Evaluation completed in 3.1 sec

mDep = 8.1860

Select Subset of Tall Array

You can extract values from a tall array by subscripting or indexing. You can index the array starting
from the top or bottom, or by using a logical index. The functions head and tail are useful
alternatives to indexing, enabling you to explore the first and last portions of a tall array. Gather both
variables at the same time to avoid extra passes through the data.

h = head(tt);
tl = tail(tt);
[h,tl] = gather(h,tl)

Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 1: Completed in 0.81 sec
Evaluation completed in 0.99 sec

h=8×6 table
 Year Month ArrDelay DepDelay Origin Dest
 ____ _____ ________ ________ ______ ____

 1987 10 8 12 LAX SJC
 1987 10 8 1 SJC BUR
 1987 10 21 20 SAN SMF
 1987 10 13 12 BUR SJC
 1987 10 4 -1 SMF LAX
 1987 10 59 63 LAX SJC
 1987 10 3 -2 SAN SFO
 1987 10 11 -1 SEA LAX

tl=8×6 table
 Year Month ArrDelay DepDelay Origin Dest
 ____ _____ ________ ________ ______ ____

 2008 12 14 1 DAB ATL
 2008 12 -8 -1 ATL TPA
 2008 12 1 9 ATL CLT

 Analyze Big Data in MATLAB Using Tall Arrays

12-179

 2008 12 -8 -4 ATL CLT
 2008 12 15 -2 BOS LGA
 2008 12 -15 -1 SFO ATL
 2008 12 -12 1 DAB ATL
 2008 12 -1 11 ATL IAD

Use head to select a subset of 10,000 rows from the data for prototyping code before scaling to the
full data set.

ttSubset = head(tt,10000);

Select Data by Condition

You can use typical logical operations on tall arrays, which are useful for selecting relevant data or
removing outliers with logical indexing. The logical expression creates a tall logical vector, which
then is used to subscript, identifying the rows where the condition is true.

Select only the flights out of Boston by comparing the elements of the categorical variable Origin to
the value 'BOS'.

idx = (ttSubset.Origin == 'BOS');
bosflights = ttSubset(idx,:)

bosflights =

 207x6 tall table

 Year Month ArrDelay DepDelay Origin Dest
 ____ _____ ________ ________ ______ ____

 1987 10 -8 0 BOS LGA
 1987 10 -13 -1 BOS LGA
 1987 10 12 11 BOS BWI
 1987 10 -3 0 BOS EWR
 1987 10 -5 0 BOS ORD
 1987 10 31 19 BOS PHL
 1987 10 -3 0 BOS CLE
 1987 11 5 5 BOS STL
 : : : : : :
 : : : : : :

You can use the same indexing technique to remove rows with missing data or NaN values from the
tall array.

idx = any(ismissing(ttSubset),2);
ttSubset(idx,:) = [];

Determine Largest Delays

Due to the nature of big data, sorting all of the data using traditional methods like sort or sortrows
is inefficient. However, the topkrows function for tall arrays returns the top k rows in sorted order.

Calculate the top 10 greatest departure delays.

biggestDelays = topkrows(ttSubset,10,'DepDelay');
biggestDelays = gather(biggestDelays)

12 Large Data

12-180

Evaluating tall expression using the Local MATLAB Session:
Evaluation completed in 0.074 sec

biggestDelays=10×6 table
 Year Month ArrDelay DepDelay Origin Dest
 ____ _____ ________ ________ ______ ____

 1988 3 772 785 ORD LEX
 1989 3 453 447 MDT ORD
 1988 12 397 425 SJU BWI
 1987 12 339 360 DEN STL
 1988 3 261 273 PHL ROC
 1988 7 261 268 BWI PBI
 1988 2 257 253 ORD BTV
 1988 3 236 240 EWR FLL
 1989 2 263 227 BNA MOB
 1989 6 224 225 DFW JAX

Visualize Data in Tall Arrays

Plotting every point in a big data set is not feasible. For that reason, visualization of tall arrays
involves reducing the number of data points using sampling or binning.

Visualize the number of flights per year with a histogram. The visualization functions pass through
the data and immediately evaluate the solution when you call them, so gather is not required.

histogram(ttSubset.Year,'BinMethod','integers')

Evaluating tall expression using the Local MATLAB Session:
Evaluation completed in 0.46 sec

xlabel('Year')
ylabel('Number of Flights')
title('Number of Flights by Year, 1987 - 1989')

 Analyze Big Data in MATLAB Using Tall Arrays

12-181

Scale to Entire Data Set

Instead of using the smaller data returned from head, you can scale up to perform the calculations on
the entire data set by using the results from tall(ds).

tt = tall(ds);
idx = any(ismissing(tt),2);
tt(idx,:) = [];
mnDelay = mean(tt.DepDelay,'omitnan');
biggestDelays = topkrows(tt,10,'DepDelay');
[mnDelay,biggestDelays] = gather(mnDelay,biggestDelays)

Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 2: Completed in 0.59 sec
- Pass 2 of 2: Completed in 1.2 sec
Evaluation completed in 2 sec

mnDelay = 8.1310

biggestDelays=10×6 table
 Year Month ArrDelay DepDelay Origin Dest
 ____ _____ ________ ________ ______ ____

 1991 3 -8 1438 MCO BWI
 1998 12 -12 1433 CVG ORF
 1995 11 1014 1014 HNL LAX
 2007 4 914 924 JFK DTW
 2001 4 887 884 MCO DTW

12 Large Data

12-182

 2008 7 845 855 CMH ORD
 1988 3 772 785 ORD LEX
 2008 4 710 713 EWR RDU
 1998 10 679 673 MCI DFW
 2006 6 603 626 ABQ PHX

histogram(tt.Year,'BinMethod','integers')

Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 2: Completed in 1.2 sec
- Pass 2 of 2: Completed in 0.8 sec
Evaluation completed in 2.3 sec

xlabel('Year')
ylabel('Number of Flights')
title('Number of Flights by Year, 1987 - 2008')

Use histogram2 to further break down the number of flights by month for the whole data set. Since
the bins for Month and Year are known ahead of time, specify the bin edges to avoid an extra pass
through the data.

year_edges = 1986.5:2008.5;
month_edges = 0.5:12.5;
histogram2(tt.Year,tt.Month,year_edges,month_edges,'DisplayStyle','tile')

Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 1: Completed in 0.99 sec
Evaluation completed in 1.1 sec

 Analyze Big Data in MATLAB Using Tall Arrays

12-183

colorbar
xlabel('Year')
ylabel('Month')
title('Airline Flights by Month and Year, 1987 - 2008')

Data Analytics and Machine Learning with Tall Arrays

You can perform more sophisticated statistical analysis on tall arrays, including calculating predictive
analytics and performing machine learning, using the functions in Statistics and Machine Learning
Toolbox™.

For more information, see “Analysis of Big Data with Tall Arrays” (Statistics and Machine Learning
Toolbox).

Scale to Big Data Systems

A key capability of tall arrays in MATLAB is the connectivity to big data platforms, such as computing
clusters and Apache Spark™.

This example only scratches the surface of what is possible with tall arrays for big data. See “Extend
Tall Arrays with Other Products” on page 12-175 for more information about using:

• Statistics and Machine Learning Toolbox™
• Database Toolbox™
• Parallel Computing Toolbox™

12 Large Data

12-184

• MATLAB® Parallel Server™
• MATLAB Compiler™

See Also
tall

More About
• “Tall Arrays for Out-of-Memory Data” on page 12-136

 Analyze Big Data in MATLAB Using Tall Arrays

12-185

Develop Custom Tall Array Algorithms
Tall arrays are a powerful, intuitive way to work with large data sets using traditional MATLAB
syntax. However, since tall arrays operate on blocks of the data, each of which individually fits into
memory, the traditional algorithms of most functions need to be updated to use a parallelized
approach to support tall arrays. This topic shows you how to develop your own parallelized
algorithms to operate on tall arrays.

Currently available approaches for applying custom functions to tall arrays are:

• “Single-Step Transformation Operation” on page 12-188: Apply a function to the blocks of data in
a tall array.

• “Two-Step Reduction Operation” on page 12-190: Apply a function to a tall array to transform the
contents, and then apply another function to reduce the output to a single block.

• “Sliding-Window Operations” on page 12-193: Apply a moving-window function to a tall array to
transform the contents.

Regardless of which operation you choose, there are options, performance considerations, and
common issues that apply to all approaches.

Reasons to Implement Custom Algorithms
Most common mathematical functions and MATLAB operations already support tall arrays. If the
functionality is already supported, then writing your own algorithm might not be necessary.

Here are some reasons why you might want to implement a custom algorithm for tall arrays:

• Implement Currently Unsupported Functions — If a particular function does not currently
support tall arrays, then you can use the APIs outlined here to write a version of that function that
supports tall arrays.

• Leverage Existing Code — If you have existing code that performs some operations on in-
memory data, then with only minor modifications you can make it compatible to operate on tall
arrays. This approach avoids the need to convert the code to fit the subset of the MATLAB
language that supports tall arrays.

• Gain Performance — For example, you can rewrite a MATLAB function as a C++ MEX function,
and then you can use the APIs outlined here to call the MEX function to operate on the data.

• Use a Preferred External Library — For compatibility within your organization it is sometimes
required to use a specific external library for certain calculations. You can use the APIs outlined
here to reimplement a function with those external libraries.

Supported APIs
The supported APIs are intended for advanced use and do not include extensive input checking.
Expect to spend some time testing that the supplemental functions you implement satisfy all of the
requirements and perform the calculations you expect. Currently supported APIs for authoring tall
array algorithms are listed here.

12 Large Data

12-186

Package Function Name Description
matlab.tall.transform Apply a specified function to each block of one or

more tall arrays.
matlab.tall.reduce Apply a specified function to each block of one or

more tall arrays. Then feed the output of that
function into a second reduction function.

matlab.tall.movingWindow Apply moving window function to blocks of data.
matlab.tall.blockMovingWindow Apply moving window function and block

reduction to padded blocks of data.

Background: Tall Array Blocks
When you create a tall array from a datastore, the underlying datastore facilitates the movement of
data during a calculation. The data moves in discrete pieces called blocks, where each block is a set
of consecutive rows that can fit in memory. For example, one block of a 2-D array (such as a table) is
X(n:m,:). The size of each block is based on the value of the ReadSize property of the datastore,
but the block is not always that exact size. For the purposes of developing tall array algorithms, a tall
array is considered to be the vertical concatenation of many such blocks.

 Develop Custom Tall Array Algorithms

12-187

The blocks of a given array are chosen at run-time based on available memory, so they can be
dynamic. Therefore, the blocks might not be exactly the same size between runs. If you have changes
on your computer that affect the available memory, then that can impact the size of the blocks.

Although this page refers only to blocks and rows in a 2-D sense, these concepts extend to N-D tall
arrays. The block size is only constrained in the first dimension, so the block includes all elements in
other dimensions; for example, X(n:m,:,:,...). Also, rather than rows, N-D arrays have slices
such as X(p,:,:,...).

Single-Step Transformation Operation
The matlab.tall.transform function applies a single function to each block of a tall array, so you
can use it to apply a block-wise transformation, filtering, or reduction of the data. For example, you
can remove rows with specific values, center and scale the data, or detect certain conditions and
transform specific pieces of data. These figures show what happens to the blocks in an array when
they are operated on by matlab.tall.transform.

Operation Description Examples
Transformation — The number
of rows in each block remains
the same, but the values
change.

• A =
matlab.tall.transform(
@sin, tX) calculates the
sine of the elements in each
block.

• A =
matlab.tall.transform(
@(X) X.^2, tX) squares
the elements in each block.

12 Large Data

12-188

Operation Description Examples
Filtering — The number of
rows in each block are reduced,
so the blocks in the new array
might include rows originally
present in other blocks.

• A =
matlab.tall.transform(
@(X) topkrows(X,5),
tX) extracts only the top 5
rows from each block,
filtering out the other rows.

• A =
matlab.tall.transform(
@sum, tX) calculates the
sum of the elements in each
block, which reduces each
block to a scalar. The
number of elements in A is
equal to the number of
blocks.

Transform Syntax

The generic syntax to apply a single-step transform is

[tA, tB, tC, ...] = matlab.tall.transform(fcn, tX, tY, tZ, ...)

Functional Requirements for fcn

The general functional signature of fcn is

[a, b, c, ...] = fcn(x, y, z, ...)

fcn must satisfy these requirements:

1 Input Arguments — The inputs [x, y, z, ...] are blocks of data that fit in memory. The
blocks are produced by extracting data from the respective tall array inputs [tX, tY,
tZ, ...]. The inputs [x, y, z, ...] satisfy these properties:

• All of [x, y, z, ...] have the same size in the first dimension after any allowed
expansion.

 Develop Custom Tall Array Algorithms

12-189

• The blocks of data in [x, y, z, ...] come from the same index in the tall dimension,
assuming the tall array is nonsingleton in the tall dimension. For example, if tX and tY are
nonsingleton in the tall dimension, then the first set of blocks might be x = tX(1:20000,:)
and y = tY(1:20000,:).

• If the first dimension of any of [tX, tY, tZ, ...] has a size of 1, then the corresponding
block [x, y, z, ...] consists of all the data in that tall array.

2 Output Arguments — The outputs [a, b, c, ...] are blocks that fit in memory, to be sent to
the respective outputs [tA, tB, tC, ...]. The outputs [a, b, c, ...] satisfy these
properties:

• All of [a, b, c, ...] must have the same size in the first dimension.
• All of [a, b, c, ...] are vertically concatenated with the respective results of previous

calls to fcn.
• All of [a, b, c, ...] are sent to the same index in the first dimension in their respective

destination output arrays.
3 Functional Rules — fcn must satisfy the functional rule:

• F([inputs1; inputs2]) == [F(inputs1); F(inputs2)]: Applying the function to the
concatenation of the inputs should be the same as applying the function to the inputs
separately and then concatenating the results.

4 Empty Inputs — Ensure that fcn can handle an input that has a height of 0. Empty inputs can
occur when a file is empty or if you have done a lot of filtering on the data.

Two-Step Reduction Operation
matlab.tall.reduce applies two functions to a tall array, with the result of the first step being fed
in as input to a final reduction step. The reduction function is applied repeatedly to the intermediate
results until a single final block that fits in memory is obtained. In the MapReduce paradigm, this
process is similar to a "single key" MapReduce operation, where the intermediate results all have the
same key and are combined in the reduction step.

The first step is similar to matlab.tall.transform and has the same requirements. However, the
reduction step always reduces the intermediate results down to a single block that fits in memory.
These figures show what happens to the blocks in an array when they are operated on by
matlab.tall.reduce.

12 Large Data

12-190

Operation Description Examples
Transformation +
Reduction — The number
of rows in each block
remains the same after the
first step, and then the
intermediate results are
reduced to one block.

• A =
matlab.tall.reduce(@sin,@max
,tX) calculates the sine of each
block of values, and then it finds the
overall maximum value during the
reduction step.

• A = matlab.tall.reduce(@(X)
X.^2, @mean, tX) squares the
elements in each block, and then it
calculates the overall mean in the
reduction step.

 Develop Custom Tall Array Algorithms

12-191

Operation Description Examples
Filtering + Reduction —
The number of rows in
each block are reduced in
the first step. Then the
intermediate results are
reduced to one block.

• A = matlab.tall.reduce(@sum,
@sum, tX) calculates the sum of the
elements in each block, and then it
finds the overall sum of elements in
the reduction step.

• A = matlab.tall.reduce(@(X)
X(X>0), @mean, tX) filters out all
negative values, and then it
calculates the overall mean of the
remaining values.

Reduce Syntax

The generic syntax to apply a two-step reduction is

[rA, rB, rC, ...] = matlab.tall.reduce(fcn, reducefcn, tX, tY, tZ, ...)

The functional signature of fcn is

[a, b, c, ...] = fcn(x, y, z, ...)

The functional signature of reducefcn is

[rA, rB, rC, ...] = reducefcn(a, b, c, ...)

That is, the input tall arrays [tX, tY, tZ, ...] are broken into blocks [x, y, z, ...] that are
inputs to fcn. Then, fcn returns outputs [a, b, c, ...] that are inputs to reducefcn. Finally,
reducefcn returns the final results [rA, rB, rC] that are returned by matlab.tall.reduce.

Functional Requirements for reducefcn

The requirements for fcn are the same as those that were outlined in “Functional Requirements for
fcn” on page 12-189. However, the requirements for reducefcn are different.

12 Large Data

12-192

The general functional signature of reducefcn is

[rA, rB, rC, ...] = reducefcn(a, b, c, ...)

reducefcn must satisfy these requirements:

1 Input Arguments — The inputs [a, b, c, ...] are blocks that fit in memory. The blocks of
data are either outputs returned by fcn, or a partially reduced output from reducefcn that is
being operated on again for further reduction. The inputs [a, b, c, ...] satisfy these
properties:

• The inputs [a, b, c, ...] have the same size in the first dimension.
• For a given index in the first dimension, every row of the blocks of data [a, b, c, ...]

either originates from the input, or originates from the same previous call to reducefcn.
• For a given index in the first dimension, every row of the inputs [a, b, c, ...] for that

index originates from the same index in the first dimension.
2 Output Arguments — All outputs [rA, rB, rC, ...] must have the same size in the first

dimension. Additionally, they must be vertically concatenable with the respective inputs [a, b,
c, ...] to allow for repeated reductions when necessary.

3 Functional Rules — reducefcn must satisfy these functional rules (up to roundoff error):

• F(input) == F(F(input)): Applying the function repeatedly to the same inputs should not
change the result.

• F([input1; input2]) == F([input2; input1]): The result should not depend on the
order of concatenation.

• F([input1; input2]) == F([F(input1); F(input2)]): Applying the function once to
the concatenation of some intermediate results should be the same as applying it separately,
concatenating, and applying it again.

4 Empty Inputs — Ensure that reducefcn can handle an input that has a height of 0. Empty
inputs can occur when a file is empty or if you have done a lot of filtering on the data. For this
call, all input blocks are empty arrays of the correct type and size in dimensions beyond the first.

Sliding-Window Operations
The matlab.tall.movingWindow and matlab.tall.blockMovingWindow functions apply a
function to windows of data within a tall array. While matlab.tall.transform and
matlab.tall.reduce operate on entire blocks of data at a time, the moving-window functions
operate on windows of data as a window moves from the beginning to the end of the array. The
windows can span between the blocks of data being read from disk.

These figures show what happens to the blocks in an array when they are operated on by
matlab.tall.movingWindow or matlab.tall.blockMovingWindow.

 Develop Custom Tall Array Algorithms

12-193

Operation Description Examples
Windowed Transformation —
The number of rows in each
block remains the same, but the
values change. The output
contains the results of
operations performed on both
incomplete and complete
windows of data.

Both
matlab.tall.movingWindow
and
matlab.tall.blockMovingW
indow transform data when
'EndPoints' is the default
value of 'shrink', or when a
fill value is specified. Both
values ensure the output is the
same size in the first dimension
as the input.

• A =
matlab.tall.movingWind
ow(@mean, 100, tX)
calculates a moving mean
using a window size of 100.

12 Large Data

12-194

Operation Description Examples
Windowed Filtering —
Incomplete windows of data are
discarded, so the output has
fewer elements than the input.
The output only contains the
results of operations performed
on complete windows of data.

Both
matlab.tall.movingWindow
and
matlab.tall.blockMovingW
indow remove incomplete
windows of data when
'EndPoints' is 'discard'.

• A =
matlab.tall.movingWind
ow(@mean, 100, tX,
'EndPoints',
'discard') calculates a
moving mean on complete
windows of data, using a
window size of 100.

You can use matlab.tall.movingWindow and matlab.tall.blockMovingWindow to apply
windowed transformations or filters to data. For example, you can calculate a trailing average or a
moving median, or you can apply several operations at once to the same window. The two functions
differ in these ways:

• matlab.tall.movingWindow applies fcn to all windows of data, regardless of whether the
windows are complete. matlab.tall.blockMovingWindow applies windowfcn to incomplete
windows of data, and applies blockfcn to complete windows of data.

• matlab.tall.movingWindow operates on single windows of data at a time.
matlab.tall.blockMovingWindow operates on entire blocks of data containing multiple
complete windows, which reduces the number of function calls required in the calculation.

Moving Window Syntaxes

The syntax to apply a moving window operation to single windows of data is
[tA, tB, tC, ...] = matlab.tall.movingWindow(fcn, window, tX, tY, tZ, ...)

The functional signature of fcn must be

[a, b, c, ...] = fcn(x, y, z, ...)

 Develop Custom Tall Array Algorithms

12-195

Similarly, the syntax to apply a moving window operation to entire blocks of data is

[tA, tB, tC, ...] = matlab.tall.blockMovingWindow(windowfcn, blockfcn, window, tX, tY, tZ, ...)

The functional signatures of windowfcn and blockfcn must be

[a, b, c, ...] = windowfcn(info, x, y, z, ...)
[a, b, c, ...] = blockfcn(info, bX, bY, bZ, ...)

The info input is a structure that contains the fields Window and Stride. When you write the
function. use these fields to pick out windows of data in each block.

For an outline of general rules that fcn, windowfcn, and blockfcn must follow, see “Functional
Requirements for fcn” on page 12-189. Aside from the info input, fcn and windowfcn have the
same requirements. However, the requirements for blockfcn are different since that function
operates on entire blocks of data.

Functional Requirements for windowfcn

The general functional signature of windowfcn is

[a, b, c, ...] = windowfcn(info, x, y, ...)

The info input is a structure provided by matlab.tall.blockMovingWindow that includes these
fields:

• Stride — Specified step size between windows (default: 1). Set this value with the 'Stride'
name-value pair.

• Window — Specified window size. Set this value with the window input argument.

windowfcn must satisfy these requirements:

1 Input Arguments — The inputs [x, y, z, ...] are blocks of data that fit in memory. The
blocks are produced by extracting data from the respective tall array inputs [tX, tY,
tZ, ...]. The inputs [x, y, z, ...] satisfy these properties:

• All of the inputs [x, y, z, ...] have the same size in the first dimension.
• The blocks of data in [x, y, z, ...] come from the same index in the tall dimension,

assuming the tall array is nonsingleton in the tall dimension. For example, if tX and tY are
nonsingleton in the tall dimension, then the first set of blocks might be x = tX(1:20000,:)
and y = tY(1:20000,:).

• When the first dimension of any of [tX, tY, tZ, ...] has a size of 1, the corresponding
block [x, y, z, ...] consists of all the data in that tall array.

• Applying windowfcn must result in a reduction of the input data to a scalar or a slice of an
array of height 1.

When the input is a matrix, N-D array, table, or timetable, applying windowfcn must result in
a reduction of the input data in each of its columns or variables.

2 Output Arguments — The outputs [a, b, c, ...] are blocks that fit in memory to be sent to
the respective outputs [tA, tB, tC, ...]. The outputs [a, b, c, ...] satisfy these
properties:

• All of the outputs [a, b, c, ...] must have the same size in the first dimension.

12 Large Data

12-196

• All of the outputs [a, b, c, ...] are vertically concatenated with the respective results of
previous calls to windowfcn.

• All of the outputs [a, b, c, ...] are sent to the same index in the first dimension in their
respective destination output arrays.

3 Functional Rules — windowfcn must satisfy this functional rule:

• F([inputs1; inputs2]) == [F(inputs1); F(inputs2)]: Applying the function to the
concatenation of the inputs should be the same as applying the function to the inputs
separately and then concatenating the results.

Functional Requirements for blockfcn

The general functional signature of blockfcn is

[a, b, c, ...] = blockfcn(info, bX, bY, bZ, ...)

The info input is a structure provided by matlab.tall.blockMovingWindow that includes these
fields:

• Stride — Specified step size between windows (default: 1). Set this value with the 'Stride'
name-value pair.

• Window — Specified window size. Set this value with the window input argument.

The blocks of data bX, bY, bZ, ... that matlab.tall.blockMovingWindow provides to
blockfcn have these properties:

• The blocks contain only full-sized windows. blockfcn does not have to define a behavior for
incomplete windows of data.

• The first window of data starts at the first element of the block. The last element of the last
window is the last element of the block.

blockfcn must satisfy these requirements:

1 Input Arguments — The inputs [bX, bY, bZ, ...] are blocks of data that fit in memory. The
blocks are produced by extracting data from the respective tall array inputs [tX, tY,
tZ, ...]. The inputs [bX, bY, bZ, ...] satisfy these properties:

• All of the inputs [bX, bY, bZ, ...] have the same size in the first dimension after any
allowed expansion.

• The blocks of data in [bX, bY, bZ, ...] come from the same index in the tall dimension,
assuming the tall array is nonsingleton in the tall dimension. For example, if tX and tY are
nonsingleton in the tall dimension, then the first set of blocks might be bX =
tX(1:20000,:) and bY = tY(1:20000,:).

• If the first dimension of any of the data inputs [tX, tY, tZ, ...] has a size of 1, then the
corresponding block [bX, bY, bZ, ...] consists of all the data in that tall array.

• Applying blockfcn must result in a reduction of the input data such that the result has
height equal to the number of windows in the block. You can use info.Window and
info.Stride to determine the number of windows in a block.

If the input is a matrix, N-D array, table, or timetable, then applying blockfcn must result in
a reduction of the input data in each of its columns or variables.

 Develop Custom Tall Array Algorithms

12-197

2 Output Arguments — The outputs [a, b, c, ...] are blocks that fit in memory, to be sent to
the respective outputs [tA, tB, tC, ...]. The outputs [a, b, c, ...] satisfy these
properties:

• All of the outputs [a, b, c, ...] must have the same size in the first dimension.
• All of the outputs [a, b, c, ...] are vertically concatenated with the respective results of

previous calls to blockfcn.
• All of the outputs [a, b, c, ...] are sent to the same index in the first dimension in their

respective destination output arrays.
3 Functional Rules — blockfcn must satisfy this functional rule:

• F([inputs1; inputs2]) == [F(inputs1); F(inputs2)]: Applying the function to the
concatenation of the inputs should be the same as applying the function to the inputs
separately and then concatenating the results.

Control Output Data Type
If the final output from any of the “Supported APIs” on page 12-186 has a different data type from the
input, then you must specify the 'OutputsLike' name-value pair to provide one or more prototype
arrays that have the same data type and attributes as the corresponding outputs. The value of
'OutputsLike' is always a cell array, with each cell containing a prototype array for the
corresponding output argument.

For example, this call to matlab.tall.transform accepts one tall array tX as an input and returns
two outputs with different types specified by the prototype arrays protoA and protoB. Output A has
the same data type and attributes as protoA, and likewise for B and protoB.

C = {protoA protoB};
[A, B] = matlab.tall.transform(fcn, tX, 'OutputsLike', C)

A common way to supply the prototype arrays is to call fcn with trivial inputs of the proper data type,
since the outputs returned by fcn have the correct data type. In this example, the transform function
accepts a tall double, but returns a tall table. A prototype array is generated by calling fcn(0) and
the prototype is specified as the value of 'OutputsLike'.

ds = tabularTextDatastore('airlinesmall.csv','TreatAsMissing','NA');
ds.SelectedVariableNames = {'ArrDelay', 'DepDelay'};
tt = tall(ds);
tX = tt.ArrDelay;

fcn = @(x) table(x,'VariableNames',{'MyVar'});
proto_A = fcn(0);
A = matlab.tall.transform(fcn,tX,'OutputsLike',{proto_A});

Coding and Performance Tips
• Put all analytics in a single function that you call to operate directly on the data, instead of using

unnecessary nested functions.
• Experiment using a small subset of the data. Profile your code to find and fix bottlenecks before

scaling up to the entire data set, where bottlenecks can be greatly amplified.
• Pay attention to the orientation of your data, since some functions return the outputs in different

shapes depending on the input data. For example, unique can return either a row vector or a
column vector depending on the orientation of the input data.

12 Large Data

12-198

• Blocks are dynamically generated at run-time based on available computer memory. Make sure
that any specified reduction function obeys the function rule F([input1; input2]) ==
F([F(input1); F(input2)]). If this rule is not obeyed, then the results can differ significantly
between trials.

• Blocks can have any size in the first dimension, including 0 or 1. Size 0 or 1 can occur in
intermediate calculations as a result of filtering or reduction operations. Make sure your function
does the correct thing for both of these cases. One sign that the function does not handle these
cases properly is when you receive an "Output is different size" error message.

See Also
matlab.tall.blockMovingWindow | matlab.tall.movingWindow | matlab.tall.reduce |
matlab.tall.transform

More About
• “Index and View Tall Array Elements” on page 12-147
• “Visualization of Tall Arrays” on page 12-161
• “Extend Tall Arrays with Other Products” on page 12-175

 Develop Custom Tall Array Algorithms

12-199

TCP/IP Support in MATLAB

• “TCP/IP Communication Overview” on page 13-2
• “Create a TCP/IP Connection” on page 13-3
• “Configure Properties for TCP/IP Communication” on page 13-5
• “Write and Read Data over TCP/IP Interface” on page 13-7

13

TCP/IP Communication Overview
Transmission Control Protocol (TCP) is a transport protocol layered on top of the Internet Protocol
(IP) and is one of the most used networking protocols. The MATLAB TCP/IP client support uses raw
socket communication and lets you connect to remote hosts from MATLAB for reading and writing
data. For example, you could use it to acquire data from a remote weather station, and plot the data.

• Connection based protocol — The two ends of the communication link must be connected at all
times during the communication.

• Streaming protocol — TCP/IP has a long stream of data that is transmitted from one end of the
connection to the other end, and another long stream of data flowing in the opposite direction.
The TCP/IP stack at one end is responsible for breaking the stream of data into packets and
sending those packets, while the stack at the other end is responsible for reassembling the
packets into a data stream using information in the packet headers.

• Reliable protocol — The packets sent by TCP/IP contain a unique sequence number. The starting
sequence number is communicated to the other side at the beginning of communication. The
receiver acknowledges each packet, and the acknowledgment contains the sequence number so
that the sender knows which packet was acknowledged. This method implies that any packets lost
on the way can be retransmitted because the sender would know that packets did not reach their
destination because it had not received an acknowledgment. Also, packets that arrive out of
sequence can be reassembled in the proper order by the receiver.

Timeouts can be established because the sender knows (from the first few packets) how long it
takes on average for a packet to be sent and its acknowledgment received.

You can create a TCP/IP connection to a server or hardware and perform read/write operations. Use
the tcpclient function to create the connection, and the write and read functions for
synchronously reading and writing data.

See “Create a TCP/IP Connection” on page 13-3 to get started, and “Write and Read Data over
TCP/IP Interface” on page 13-7 for examples of reading and writing data.

13 TCP/IP Support in MATLAB

13-2

Create a TCP/IP Connection
The MATLAB TCP/IP client support lets you connect to remote hosts or hardware from MATLAB for
reading and writing data. The typical workflow is:

• Create a TCP/IP connection to a server or hardware.
• Configure the connection if necessary.
• Perform read and write operations.
• Clear and close the connection.

To communicate over the TCP/IP interface, you first create a TCP/IP object using the tcpclient
function. The syntax is:

<objname> = tcpclient(Address, Port)

The address can be either a remote host name or a remote IP address. In both cases, the Port must
be a positive integer between 1 and 65535.

Create Object Using Host Name

This example creates the TCP/IP object t using the host address shown and port of 80.

t = tcpclient('www.mathworks.com', 80)

t =

 tcpclient with properties:

 Address: 'www.mathworks.com'
 Port: 80
 Timeout: 10
 BytesAvailable: 0
 ConnectTimeout: Inf

Note When connecting using a host name, such as a specified web address or 'localhost', the IP
address will be resolved according to the configuration of your network interface. This may result in
an IPv4 address or an IPv6 address. If your TCP/IP server expects the incoming connections to be of a
certain type of address, for example IPv4 address only, you may be required to use the explicit IP
address, instead of the host name, when creating the client.

Create Object Using IP Address

This example creates the TCP/IP object tusing the IP address shown and port of 4012.

t = tcpclient('172.28.154.231', 4012)

t =

 tcpclient with properties:

 Address: '172.28.154.231'
 Port: 4012
 Timeout: 10

 Create a TCP/IP Connection

13-3

 BytesAvailable: 0
 ConnectTimeout: Inf

Set the Timeout Property

You can create the object using a name-value pair to set the Timeout value. The Timeout property
specifies the waiting time to complete read and write operations in seconds, and the default is 10.
You can change the value either during object creation or after you create the object.

This example creates a TCP/IP object, but increases the Timeout to 20 seconds.

t = tcpclient('172.28.154.231', 4012, 'Timeout', 20)

t =

 tcpclient with properties:

 Address: '172.28.154.231'
 Port: 4012
 Timeout: 20
 BytesAvailable: 0
 ConnectTimeout: Inf

The output reflects the Timeout property change.

Set the Connect Timeout Property

You can create the object using a name-value pair to set the ConnectTimeout value. The
ConnectTimeout property specifies the maximum time in seconds to wait for a connection request
to the specified remote host to succeed or fail. The value must be greater than or equal to 1. If not
specified, the default value of ConnectionTimeout is Inf. You can change the value only during
object creation.

This example creates a TCP/IP object, but specifies the ConnectTimeout as 10 seconds.

t = tcpclient('172.28.154.231', 4012, 'ConnectTimeout', 10)

t =

 tcpclient with properties:

 Address: '172.28.154.231'
 Port: 4012
 Timeout: 10
 BytesAvailable: 0
 ConnectTimeout: 10

The output reflects the ConnectTimeout property change.

Note If an invalid address or port is specified or the connection to the server cannot be established,
the object is not created.

13 TCP/IP Support in MATLAB

13-4

Configure Properties for TCP/IP Communication
The tcpclient object has the following properties.

Property Description
Address Remote host name or IP address for connection. Specify address as the

first argument when you create the tcpclient object. In this example
Address is '172.28.154.231'.

t = tcpclient('172.28.154.231', 4012)
Port Remote host port for connection. Specify port number as the second

argument when you create the tcpclient object. The Port must be a
positive integer between 1 and 65535. In this example Port is 4012.

t = tcpclient('www.mathworks.com', 4012)
BytesAvailable Read-only property that returns the number of bytes available in the input

buffer.
Timeout Waiting time in seconds to complete read and write operations, specified

as a positive value of type double. The default is 10. You can change the
value either during object creation, or after you create the object.

ConnectTimeout Maximum time in seconds to wait for a connection request to the specified
remote host to succeed or fail, specified as a positive value of type
double. If not specified, the default value is Inf. You can change the
value only during object creation.

Setting the Timeout

The default value for Timeout is 10 seconds. You can change the value either during object creation,
or after you create the object.

You can optionally create the tcpclient object using a name-value pair to set the Timeout value.

This example creates the TCP/IP object and increases the Timeout to 20 seconds.

t = tcpclient('172.28.154.231', 4012, 'Timeout', 20)

t =

 tcpclient with properties:

 Address: '172.28.154.231'
 Port: 4012
 Timeout: 20
 BytesAvailable: 0
 ConnectTimeout: Inf

The output reflects the Timeout property change from the default of 10 seconds to 20 seconds.

You can also change it anytime by setting the property value using this syntax.

<object_name>.<property_name> = <property_value>

 Configure Properties for TCP/IP Communication

13-5

This example using the same object named t increases the Timeout to 30 seconds.

t.Timeout = 30

Setting the Connect Timeout

You can create the tcpclient object using a name-value pair to set the ConnectTimeout value.
The ConnectTimeout property specifies the maximum time in seconds to wait for a connection
request to the specified remote host to succeed or fail. The value must be greater than or equal to 1.
If not specified, the default value of ConnectionTimeout is Inf. You can change the value only
during object creation.

This example creates a TCP/IP object, but changes the ConnectTimeout to 10 seconds.

t = tcpclient('172.28.154.231', 4012, 'ConnectTimeout', 10)

t =

 tcpclient with properties:

 Address: '172.28.154.231'
 Port: 4012
 Timeout: 10
 BytesAvailable: 0
 ConnectTimeout: 10

The output reflects the ConnectTimeout property change.

13 TCP/IP Support in MATLAB

13-6

Write and Read Data over TCP/IP Interface
In this section...
“Write Data” on page 13-7
“Read Data” on page 13-7
“Acquire Data from a Weather Station Server” on page 13-8
“Read and Write uint8 Data” on page 13-8

Write Data
The write function synchronously writes data to the remote host connected to the tcpclient
object. First specify the data, then write the data. The function waits until the specified number of
values is written to the remote host.

In this example, a tcpclient object t already exists.

% Create a variable called data
data = 1:10;

% Write the data to the object t
write(t, data)

Note For any read or write operation, the data type is converted to uint8 for the data transfer. It is
then converted back to whatever data type you set if you specified another data type.

Read Data
The read function synchronously reads data from the remote host connected to the tcpclient
object and returns the data. There are three read options:

• Read all bytes available (no arguments)
• Optionally specify the number of bytes to read
• Optionally specify the data type

If you do not specify a size, the default read uses the BytesAvailable property value, which is
equal to the numbers of bytes available in the input buffer.

In these examples, a tcpclient object t already exists.

% Read all bytes available.
read(t)

% Specify the number of bytes to read, 5 in this case.
read(t, 5)

% Specify the number of bytes to read, 10, and the data type, double.
read(t, 10, 'double')

Note For any read or write operation, the data type is converted to uint8 for the data transfer. It is
then converted back to whatever data type you set if you specified another data type.

 Write and Read Data over TCP/IP Interface

13-7

Acquire Data from a Weather Station Server
One of the primary uses of TCP/IP communication is to acquire data from a server. This example
shows how to acquire and plot data from a remote weather station.

Note The IP address in this example is not a working IP address. The example shows how to connect
to a remote server. You should substitute the address shown here with the IP address or host name of
a server you want to communicate with.

1 Create the tcpclient object using the Address shown here and Port of 1045.

t = tcpclient('172.28.154.231', 1045)

t =

 tcpclient with properties:

 Address: '172.28.154.231'
 Port: 1045
 Timeout: 10
 BytesAvailable: 0

See the note above step 1 about using a valid address.
2 Acquire data using the read function. Specify the number of bytes to read as 30, for 10 samples

from 3 sensors (temperature, pressure, and humidity). Specify the data type as double.

data = read(t, 30, 'double');
3 Reshape the 1x30 data into 10x3 data to show one column each for temperature, pressure, and

humidity.

data = reshape(data, [3, 10]);
4 Plot the temperature.

subplot(311);
plot(data(:, 1));

5 Plot the pressure.

subplot(312);
plot(data(:, 2));

6 Plot the humidity.

subplot(313);
plot(data(:, 3));

7 Close the connection between the TCP/IP client object and the remote host by clearing the
object.

clear t

Read and Write uint8 Data
This example shows how to read and write uint8 data from an echo server.

13 TCP/IP Support in MATLAB

13-8

1 Create the tcpclient object using a local host at Port 7.

t = tcpclient('localhost', 7)

t =

 tcpclient with properties:

 Address: 'localhost'
 Port: 7
 Timeout: 10
 BytesAvailable: 0

2 Assign 10 bytes of uint8 data to the variable data.

data = uint8(1:10)

data =

 1 2 3 4 5 6 7 8 9 10
3 Check the data.

whos data

Name Size Bytes Class Attributes

data 1x10 10 uint8
4 Write the data to the echoserver.

write(t, data)
5 Check that the data was written using the BytesAvailable property.

t.BytesAvailable

ans =

 10
6 Read the data from the server.

read(t)

ans =

 1 2 3 4 5 6 7 8 9 10
7 Close the connection by clearing the object.

clear t

 Write and Read Data over TCP/IP Interface

13-9

Bluetooth Low Energy Communication

• “Bluetooth Low Energy Communication Overview” on page 14-2
• “Find Your Bluetooth Low Energy Peripheral Devices” on page 14-4
• “Work with Device Characteristics and Descriptors” on page 14-7
• “Collect Data from Fitness Monitoring Devices” on page 14-12
• “Track Orientation of Bluetooth Low Energy Device” on page 14-18
• “Troubleshooting Bluetooth Low Energy” on page 14-23

14

Bluetooth Low Energy Communication Overview
Bluetooth Low Energy is a wireless communication protocol for discovering and communicating with
low-power peripheral devices. Bluetooth Low Energy support in MATLAB allows you to:

• Scan for nearby peripheral devices and view their advertisement data.
• Establish a connection between your computer and peripheral devices.
• Read and write characteristic and descriptor data.
• Subscribe to characteristics to enable notification or indication.

Bluetooth Low Energy Communication in MATLAB is different from “Bluetooth Communication”
(Instrument Control Toolbox) in Instrument Control Toolbox™ and Bluetooth in Communications
Toolbox™. To understand the use cases for each feature and to decide which one best fits your needs,
refer to the documentation in their respective toolboxes.

Prerequisites and Setup
To use the Bluetooth Low Energy interface in MATLAB, you need the following:

• A peripheral device that supports Bluetooth 4.0 or higher
• A built-in or external Bluetooth 4.0 adapter on your computer
• MATLAB installed on your computer

Make sure your computer has Bluetooth turned on. The peripheral device that you are scanning for
must be near your computer and disconnected from other devices and applications.

Bluetooth Low Energy Concepts
The Bluetooth Low Energy communication is based on the Generic Access Profile (GAP) protocol for
device discovery and the Generic Attribute (GATT) protocol for device communication. Both of these
protocols are documented in detail on the Bluetooth SIG website. Although specific knowledge about
GAP and GATT is not necessary to communicate with Bluetooth Low Energy devices in MATLAB,
there are a few important concepts to understand.

During discovery, devices are either central devices or peripheral devices.

• A central device scans for advertisement data from other devices. In the Bluetooth Low Energy
interface in MATLAB, your computer is always the central device.

• A peripheral device transmits advertisement data. Peripheral devices are nearby devices that you
are scanning for. Peripheral devices include fitness trackers, health monitors, and personal
electronics such as smartwatches or wireless headphones.

After discovering the peripheral devices, you can connect to multiple peripheral devices from
MATLAB at the same time. For more information about scanning for and connecting to peripheral
devices, see “Find Your Bluetooth Low Energy Peripheral Devices” on page 14-4.

After establishing a connection between MATLAB on your computer and a Bluetooth Low Energy
peripheral device, the two have a client-server relationship. The server is the device that contains
data, while the client is the device that receives the data and performs a function.

14 Bluetooth Low Energy Communication

14-2

https://www.bluetooth.com/specifications

Services, Characteristics, and Descriptors
The building blocks of Bluetooth Low Energy device communication are services, characteristics, and
descriptors. All three of these play a role in reading from and writing to peripheral devices in
MATLAB. In peripheral devices, their functions are as follows:

• Services are collections of related characteristics. Services are not readable or writable, but the
characteristics that they contain can be. For example, the Heart Rate service includes both the
Heart Rate Measurement and Body Sensor Location characteristics.

• Characteristics contain values for user data or device data. This is the primary attribute of the
peripheral device that you want to read. For example, the Heart Rate Measurement characteristic
is a standard characteristic commonly found on fitness trackers. You can read or write
characteristic values.

• Descriptors describe characteristic values. Each characteristic can have one or more descriptors
associated with it. A descriptor contains metadata about the characteristic value being measured.
For example, the Client Characteristic Configuration Descriptor is a descriptor that determines
whether the device is currently collecting characteristic data or not. You can read or write
descriptor values.

All three of these can be standard or custom. Standard services, characteristics, and descriptors are
defined by the Bluetooth SIG, while custom services, characteristics, and descriptors are usually
specific to the device or device manufacturer.

In the Bluetooth Low Energy interface in MATLAB, you can use read and write on
characteristic and descriptor objects. You can also use subscribe and unsubscribe with
characteristic objects. For more information about how to perform these operations, see “Work
with Device Characteristics and Descriptors” on page 14-7.

See Also
ble | blelist | characteristic | descriptor | read | subscribe | unsubscribe | write

More About
• “Find Your Bluetooth Low Energy Peripheral Devices” on page 14-4
• “Work with Device Characteristics and Descriptors” on page 14-7
• “Collect Data from Fitness Monitoring Devices” on page 14-12
• “Track Orientation of Bluetooth Low Energy Device” on page 14-18
• “Troubleshooting Bluetooth Low Energy” on page 14-23

External Websites
• Bluetooth SIG

 Bluetooth Low Energy Communication Overview

14-3

https://www.bluetooth.com

Find Your Bluetooth Low Energy Peripheral Devices
You can see a list of nearby Bluetooth Low Energy peripheral devices using blelist. After you
identify your device on the list, you can establish a connection to it from MATLAB using ble.

Scan for Devices
Scan for Bluetooth Low Energy peripheral devices from MATLAB using blelist. This function lists
all nearby peripheral devices that are advertising data. You can view the advertisement data for each
device in MATLAB to determine whether it is connectable. If your device does not appear in the list,
make sure it is powered on, nearby, and disconnected from any other devices or applications. Then
scan for it again.

list = blelist

list=5×5 table
 Index Name Address RSSI Advertisement
 _____ __________________ ______________ ____ _____________

 1 "Gear Fit2 (E16A)" "8498663EE16A" -54 [1×1 struct]
 2 "" "2C4D2724754D" -69 [1×1 struct]
 3 "" "1B75E09FD18F" -70 [1×1 struct]
 4 "" "4F7D6DAF9FCE" -75 [1×1 struct]
 5 "" "7B8ADB5851BD" -76 [1×1 struct]

Devices are sorted by RSSI, which represents signal strength. If there are several devices listed, use
the Name field to identify your device.

The advertisement data for each device contains data defined in the Generic Access Profile (GAP) by
Bluetooth SIG. The Type field in the advertisement data Advertisement shows the connection
status. View advertisement data of the first device.

list.Advertisement(1)

ans = struct with fields:
 Type: ["Connectable Undirected" "Scan Response"]
 Appearance: "Generic Watch"
 ShortenedLocalName: []
 CompleteLocalName: "Gear Fit2 (E16A)"
 TxPowerLevel: []
 SlaveConnectionIntervalRange: []
 ManufacturerSpecificData: [0 117 1 0 2 0 1 3 0]
 ServiceData: []
 CompleteServiceUUIDs: []
 IncompleteServiceUUIDs: []
 ServiceSolicitationUUIDs: []

Scan for Devices by Name

You can use name-value pair arguments to list only devices with a particular name.

For example, list all peripheral devices with names starting with the string "UA".

list = blelist("Name","UA")

14 Bluetooth Low Energy Communication

14-4

list=2×5 table
 Index Name Address RSSI Advertisement
 _____ ___________________ ______________ ____ _____________

 1 "UA E39 MODULE" "84DD20E39AB6" -84 [1×1 struct]
 2 "UA Footpod 239AE2" "0CF3EE239AE2" -87 [1×1 struct]

You can use name-value pair arguments to scan for specific names when you have many peripheral
devices nearby.

Scan for Devices by Service Name or UUID

For devices that are advertising services, you can use name-value pair arguments to list only devices
with the specified service. Service name and service UUID are both valid.

For example, list all peripheral devices that advertise the Heart Rate service.

list = blelist("Services","Heart Rate")

list=1×5 table
 Index Name Address RSSI Advertisement
 _____ ___________________ ______________ ____ _____________

 1 "UA E39 MODULE" "84DD20E39AB6" -84 [1×1 struct]

You can use name-value pair arguments to scan for specific services when you know which services
you want to work with.

Scan for Longer Time

You can increase the amount of time MATLAB scans for nearby devices. This is useful if your device
has a high advertising interval and does not appear in the list with the default timeout value of three
seconds.

list = blelist("Timeout",10);

Connect to a Device
After you discover your device, establish a connection between MATLAB and the peripheral device
using ble. Specify the device name or address from the blelist output.

b = ble("Gear Fit2 (E16A)")

b =
 ble with properties:

 Name: "Gear Fit2 (E16A)"
 Address: "8498663EE16A"
 Connected: 1
 Services: [2×2 table]
 Characteristics: [3×5 table]

Show services and characteristics

After creating a connection to your device, you can work with the Characteristics listed in the
ble properties. See “Work with Device Characteristics and Descriptors” on page 14-7 for more
information and next steps.

 Find Your Bluetooth Low Energy Peripheral Devices

14-5

See Also
ble | blelist

More About
• “Work with Device Characteristics and Descriptors” on page 14-7
• “Collect Data from Fitness Monitoring Devices” on page 14-12
• “Track Orientation of Bluetooth Low Energy Device” on page 14-18
• “Troubleshooting Bluetooth Low Energy” on page 14-23

14 Bluetooth Low Energy Communication

14-6

Work with Device Characteristics and Descriptors
Before working with characteristics or descriptors, scan for and create a connection to your
Bluetooth Low Energy peripheral device. See “Find Your Bluetooth Low Energy Peripheral Devices”
on page 14-4 for more information and instructions. After connecting to your device, you can
interface with it by reading or writing the device characteristics and descriptors.

b = ble("DemoDev");

Access Device Characteristics
View your device characteristics by looking at the Characteristics property of the ble object.

b.Characteristics

ans=11×5 table
 ServiceName ServiceUUID CharacteristicName CharacteristicUUID Attributes
 ___________________ ______________________________________ __ ______________________________________ ______________

 "Generic Access" "1800" "Device Name" "2A00" {1×2 string }
 "Generic Access" "1800" "Appearance" "2A01" {["Read"]}
 "Generic Access" "1800" "Peripheral Preferred Connection Parameters" "2A04" {["Read"]}
 "Generic Access" "1800" "Central Address Resolution" "2AA6" {["Read"]}
 "Generic Attribute" "1801" "Service Changed" "2A05" {["Indicate"]}
 "Heart Rate" "180D" "Heart Rate Measurement" "2A37" {["Notify"]}
 "Heart Rate" "180D" "Body Sensor Location" "2A38" {["Read"]}
 "Battery Service" "180F" "Battery Level" "2A19" {["Read"]}
 "User Data" "181C" "Gender" "2A8C" {1×2 string }
 "Custom" "03B80E5A-EDE8-4B33-A751-6CE34EC4C700" "Custom" "7772E5DB-3868-4112-A1A9-F2669D106BF3" {1×6 string }
 "Custom" "03B80E5A-EDE8-4B33-A751-6CE34EC4C700" "Custom" "7772E5DC-3868-4112-A1A9-F2669D106BF3" {1×3 string }

This table lists each characteristic and the service it is associated with. As the table shows, each
service can contain multiple characteristics. If multiple characteristics have the same name,
differentiate between them using the UUID. In this example, the device has both standard and custom
characteristics. Standard characteristics are defined by the Bluetooth SIG, while custom
characteristics are usually specific to the device or device manufacturer.

The Attributes field in this table tells you the read and write permissions for each characteristic.
Select a characteristic you are interested in and view its properties using characteristic. For
example, access the "Gender" characteristic using the service and characteristic names.

c = characteristic(b,"User Data","Gender")

c =
 Characteristic with properties:

 Name: "Gender"
 UUID: "2A8C"
 Attributes: "Read" "Write"
 Descriptors: []

This characteristic is both readable and writable.

 Work with Device Characteristics and Descriptors

14-7

Read and Write Characteristic Data

Because the "Gender" characteristic is readable and writable, you can write data to it and verify the
change in values.

Use read to get the current data. The full behavior of read for a characteristic depends on the
Attributes property, as described in characteristicData.

data = read(c)

data = 0

Interpret the data by referring to the specification for this characteristic on the Bluetooth SIG
website. 0 represents male and 1 represents female. Write 1 to the characteristic to indicate female
using write.

write(c,1)

You can read from the characteristic again to observe the change in the data.

data = read(c)

data = 1

Subscribe to Characteristic

You can also subscribe to a characteristic to enable notification or indication on the characteristic.
You can only subscribe to characteristics that contain "Notify", "Indicate", or both in the
Attributes property. After you enable notification or indication for a characteristic, use read to get
the updated data. See characteristicData for a description of the full behavior of read based on
Attributes.

For this example, create a characteristic object that represents the "Heart Rate Measurement"
characteristic.

c = characteristic(b,"Heart Rate","Heart Rate Measurement")

c =
 Characteristic with properties:

 Name: "Heart Rate Measurement"
 UUID: "2A37"
 Attributes: "Notify"
 Descriptors: [1x3 table]
 DataAvailableFcn: []

Show descriptors

This characteristic supports "Notify".

Start receiving notifications by using subscribe. See type for a description of the full behavior of
subscribe based on Attributes.

subscribe(c)

Read from the characteristic to check that you are receiving data.

14 Bluetooth Low Energy Communication

14-8

https://www.bluetooth.com/specifications/gatt/characteristics/
https://www.bluetooth.com/specifications/gatt/characteristics/

read(c)

ans = 1×19

 23 14 1 187 1 186 1 185 1 184 1 183 1 182 1 181 1 180 1

Interpret the data by referring to the specification for this characteristic on the Bluetooth SIG
website.

After you finish working with the characteristic, disable notifications using unsubscribe.

unsubscribe(c)

Use Callback Function to Read Characteristic Data

You can also create a callback function to read characteristic data as it updates with new data from
the device.

Because the "Heart Rate Measurement" characteristic supports "Notify", you can create a
callback function called displayCharacteristicData. Specify the read mode as 'oldest'
instead of 'latest'. Calling the 'latest' data can lead to errors in the callback function caused
by the flushing of previous data.

function displayCharacteristicData(src,evt)
 [data,timestamp] = read(src,'oldest');
 disp(data);
 disp(timestamp);
end

Use the @ operator to assign the function handle to the DataAvailableFcn property of the
characteristic. When a new notification is available, the callback is called.

c.DataAvailableFcn = @displayCharacteristicData

c =
 Characteristic with properties:

 Name: "Heart Rate Measurement"
 UUID: "2A37"
 Attributes: "Notify"
 Descriptors: [1x3 table]
 DataAvailableFcn: displayCharacteristicData

Show descriptors

After you finish working with the characteristic, disable notifications and reset the callback using
unsubscribe.

unsubscribe(c)
c.DataAvailableFcn = [];

 Work with Device Characteristics and Descriptors

14-9

https://www.bluetooth.com/specifications/gatt/characteristics/
https://www.bluetooth.com/specifications/gatt/characteristics/

Access Device Descriptors
If a characteristic has descriptors, you can access the descriptors to read from or write to them. View
the descriptors for a characteristic by looking at the Descriptors property of the characteristic
object.

For this example, show the Descriptors for the "Heart Rate Measurement" characteristic.

c.Descriptors

ans=1×3 table
 DescriptorName DescriptorUUID Attributes
 _____________________________________ ______________ ____________

 "Client Characteristic Configuration" "2902" {1×2 string}

Access the "Client Characteristic Configuration" descriptor.

d = descriptor(c,"Client Characteristic Configuration")

d =
 Descriptor with properties:

 Name: "Client Characteristic Configuration"
 UUID: "2902"
 Attributes: ["Read" "Write"]

This descriptor is both readable and writable.

Read and Write Descriptor Data

The "Client Characteristic Configuration" descriptor contains information about whether
notification or indication is enabled or disabled. You can use read to get the current data.

data = read(d)

data = 1×2

 0 0

Interpret this data by referring to the specification for this descriptor on the Bluetooth SIG website.

This value changes when the notification or indication status changes. For example, write to this
value to enable notification for the "Heart Rate Measurement" characteristic using write. Then,
observe the change in values by reading the descriptor again.

write(d,[1 0])
data = read(d)

data = 1×2

 1 0

See Also
characteristic | descriptor | read | subscribe | unsubscribe | write

14 Bluetooth Low Energy Communication

14-10

https://www.bluetooth.com/specifications/gatt/characteristics/

More About
• “Find Your Bluetooth Low Energy Peripheral Devices” on page 14-4
• “Collect Data from Fitness Monitoring Devices” on page 14-12
• “Track Orientation of Bluetooth Low Energy Device” on page 14-18
• “Troubleshooting Bluetooth Low Energy” on page 14-23

 Work with Device Characteristics and Descriptors

14-11

Collect Data from Fitness Monitoring Devices
This example shows how to collect and plot data from fitness monitoring devices using Bluetooth®
Low Energy communication.

Hardware Setup

This example uses an Under Armour® heart rate monitor belt and a pair of Under Armour smart
running shoes. Both devices support Bluetooth Low Energy communication.

Discover and Connect to Devices

First, check that the Bluetooth Low Energy devices support connections by finding them in MATLAB.
The blelist function scans nearby Bluetooth Low Energy peripheral devices that are advertising.

blelist

ans=14×5 table
 Index Name Address RSSI Advertisement
 _____ ___________________ ______________________________________ ____ _____________

 1 "" "21996E3A-8F31-496D-B332-79D03B759BC7" -65 [1×1 struct]
 2 "" "12377421-4EA3-4F77-9365-EFD580C34DE9" -66 [1×1 struct]
 3 "UA E39 MODULE" "8206F662-BA4A-483F-A908-516FF506BFB0" -67 [1×1 struct]
 4 "" "CF65AD36-2146-4CA1-BCEA-FED47F6195CA" -76 [1×1 struct]
 5 "UA Footpod 239AE2" "CF7B1A17-4104-4D7B-AE70-1837CAE9C9D0" -78 [1×1 struct]
 6 "" "67A1A92A-5F1C-4AF8-857A-99F194E9A5F8" -82 [1×1 struct]
 7 "" "5609D68D-0EED-41D7-BE19-F3ACAA119C7A" -84 [1×1 struct]
 8 "" "5A17DF46-6F71-4DAC-AF0D-0F28E3911187" -85 [1×1 struct]
 9 "" "9675A0FA-0394-468B-B908-040696E1C5BC" -88 [1×1 struct]
 10 "" "61540D17-C2DD-41D4-B107-E2E7374B11F4" -88 [1×1 struct]
 11 "" "C2A5CCC3-CA6C-4688-AAE9-A5BE039561F9" -92 [1×1 struct]
 12 "" "AF5E1195-4088-4A4B-ADA5-0BD3C91BFE62" -93 [1×1 struct]
 13 "" "83C69EFB-0FAD-4A35-B167-79C51A1F245D" -94 [1×1 struct]
 14 "" "993276FD-07EC-433D-85E1-E144B289B648" -95 [1×1 struct]

After the devices are found in MATLAB, connect to them by calling ble. Specify the name of the
device if the name is unique, or specify the device address.

belt = ble("UA E39 MODULE")

belt =
 ble with properties:

 Name: "UA E39 MODULE"
 Address: "8206F662-BA4A-483F-A908-516FF506BFB0"
 Connected: 1
 Services: [4×2 table]
 Characteristics: [22×5 table]

Show services and characteristics

shoe = ble("UA Footpod 239AE2")

shoe =
 ble with properties:

14 Bluetooth Low Energy Communication

14-12

 Name: "UA Footpod 239AE2"
 Address: "CF7B1A17-4104-4D7B-AE70-1837CAE9C9D0"
 Connected: 1
 Services: [8×2 table]
 Characteristics: [39×5 table]

Show services and characteristics

Access the Characteristics property of the ble object belt. This device has the "Heart Rate" service
which contains the "Heart Rate Measurement" characteristic.

belt.Characteristics

ans=22×5 table
 ServiceName ServiceUUID CharacteristicName CharacteristicUUID Attributes
 ____________________ ______________________________________ ___ ______________________________________ ____________

 "Heart Rate" "180D" "Heart Rate Measurement" "2A37" {["Notify"]}
 "Heart Rate" "180D" "Body Sensor Location" "2A38" {["Read"]}
 "Heart Rate" "180D" "Heart Rate Control Point" "2A39" {["Write"]}
 "Battery Service" "180F" "Battery Level" "2A19" {1×2 string}
 "Device Information" "180A" "System ID" "2A23" {["Read"]}
 "Device Information" "180A" "Model Number String" "2A24" {["Read"]}
 "Device Information" "180A" "Serial Number String" "2A25" {["Read"]}
 "Device Information" "180A" "Firmware Revision String" "2A26" {["Read"]}
 "Device Information" "180A" "Hardware Revision String" "2A27" {["Read"]}
 "Device Information" "180A" "Software Revision String" "2A28" {["Read"]}
 "Device Information" "180A" "Manufacturer Name String" "2A29" {["Read"]}
 "Device Information" "180A" "IEEE 11073-20601 Regulatory Certification Data List" "2A2A" {["Read"]}
 "Device Information" "180A" "PnP ID" "2A50" {["Read"]}
 "Custom" "21A51000-4C86-11E2-BCFD-0800200C9A66" "Custom" "21A51011-4C86-11E2-BCFD-0800200C9A66" {1×2 string}
 "Custom" "21A51000-4C86-11E2-BCFD-0800200C9A66" "Custom" "21A51021-4C86-11E2-BCFD-0800200C9A66" {1×2 string}
 "Custom" "21A51000-4C86-11E2-BCFD-0800200C9A66" "Custom" "21A51022-4C86-11E2-BCFD-0800200C9A66" {["Write"]}
 ⋮

Access the Characteristics property of the ble object shoe. This device has the "Running Speed and
Cadence" service which contains the "RSC Measurement" characteristic.

shoe.Characteristics

ans=39×5 table
 ServiceName ServiceUUID CharacteristicName CharacteristicUUID Attributes
 ___________________________ ______________________________________ ___ ______________________________________ ____________

 "Device Information" "180A" "System ID" "2A23" {["Read"]}
 "Device Information" "180A" "Model Number String" "2A24" {["Read"]}
 "Device Information" "180A" "Serial Number String" "2A25" {["Read"]}
 "Device Information" "180A" "Firmware Revision String" "2A26" {["Read"]}
 "Device Information" "180A" "Hardware Revision String" "2A27" {["Read"]}
 "Device Information" "180A" "Software Revision String" "2A28" {["Read"]}
 "Device Information" "180A" "Manufacturer Name String" "2A29" {["Read"]}
 "Device Information" "180A" "IEEE 11073-20601 Regulatory Certification Data List" "2A2A" {["Read"]}
 "Device Information" "180A" "PnP ID" "2A50" {["Read"]}
 "Battery Service" "180F" "Battery Level" "2A19" {1×2 string}
 "Running Speed and Cadence" "1814" "RSC Measurement" "2A53" {["Notify"]}
 "Running Speed and Cadence" "1814" "RSC Feature" "2A54" {["Read"]}
 "Running Speed and Cadence" "1814" "SC Control Point" "2A55" {1×2 string}

 Collect Data from Fitness Monitoring Devices

14-13

 "Custom" "21A54000-4C86-11E2-BCFD-0800200C9A66" "Custom" "21A54001-4C86-11E2-BCFD-0800200C9A66" {1×2 string}
 "Custom" "21A54000-4C86-11E2-BCFD-0800200C9A66" "Custom" "21A54002-4C86-11E2-BCFD-0800200C9A66" {1×2 string}
 "Custom" "21A54000-4C86-11E2-BCFD-0800200C9A66" "Custom" "21A54003-4C86-11E2-BCFD-0800200C9A66" {1×3 string}
 ⋮

Read Heart Rate Data

Next, create an object for the "Heart Rate Measurement" characteristic by specifying its service and
characteristic information.

hr = characteristic(belt, "heart rate", "heart rate measurement")

hr =
 Characteristic with properties:

 Name: "Heart Rate Measurement"
 UUID: "2A37"
 Attributes: "Notify"
 Descriptors: [1x3 table]
 DataAvailableFcn: []

Show descriptors

Then read the current heart rate measurement from the device.

data = read(hr)

data = 1×4

 22 96 73 3

According to Bluetooth Low Energy Specification, the "Heart Rate Measurement" characteristic value
contains a flag byte followed by one or many heart rate values. The format of the measurement value
depends on the flag value. Convert the raw data to a heart rate in beats per minute (bpm).

flag = uint8(data(1));
% Get the first bit of the flag, which indicates the format of the heart rate value
heartRateValueFormat = bitget(flag, 1);
if heartRateValueFormat == 0
 % Heart rate format is uint8
 heartRate = data(2);
else
 % Heart rate format is uint16
 heartRate = double(typecast(uint8(data(2:3)), 'uint16'));
end
fprintf('Heart rate measurement: %d(bpm)\n', heartRate);

Heart rate measurement: 96(bpm)

Read Running Speed and Cadence Data

Similarly, create an object for the "RSC Measurement" characteristic by specifying its service and
characteristic information.

rsc = characteristic(shoe, "running speed and cadence", "rsc measurement")

14 Bluetooth Low Energy Communication

14-14

https://www.bluetooth.com/specifications/gatt/viewer?attributeXmlFile=org.bluetooth.characteristic.heart_rate_measurement.xml

rsc =
 Characteristic with properties:

 Name: "RSC Measurement"
 UUID: "2A53"
 Attributes: "Notify"
 Descriptors: [1x3 table]
 DataAvailableFcn: []

Show descriptors

Then read the current running speed and cadence value from the device.

data = read(rsc)

data = 1×10

 3 0 0 0 0 0 84 57 0 0

According to Bluetooth Low Energy Specification, the "RSC Measurement" characteristic value
contains 2 bytes that represents the instantaneous speed and 1 byte that represents the
instantaneous cadence. Convert the raw data to a running speed in meters per second (m/s) and to a
cadence in steps per minute.

instantaneousSpeed = double(typecast(uint8(data(2:3)), 'uint16'))/256;
instantaneousCadence = data(4);
fprintf('Instantaneous speed: %.2f(m/s) and instantaneous cadence: %d(steps per minute)\n', instantaneousSpeed, instantaneousCadence);

Instantaneous speed: 0.00(m/s) and instantaneous cadence: 0(steps per minute)

Correlate Heart Rate and Running Speed

After reading the heart rate and RSC data, track live data during a running session and correlate the
two measurements to analyze fitness performance.

To show the correlation of fitness data, first create two plots to create an animation by adding data
points in a loop.

% Create a plot for running speed against heart rate
axSpeed = axes('XLim', [0, 5], 'YLim', [60, 220]);
xlabel(axSpeed, 'Running speed (m/s)');
ylabel(axSpeed, 'Heart rate (bpm)');
subplot(1, 2, 1, axSpeed);
hSpeed = animatedline(axSpeed, 'Marker', 'o', 'MarkerFaceColor', 'green');

% Create a plot for running cadence against heart rate
axCadence = axes('XLim', [0, 200], 'YLim', [60 220]);
xlabel(axCadence, 'Running cadence (steps per minute)');
ylabel(axCadence, 'Heart rate (bpm)');
subplot(1, 2, 2, axCadence);
hCadence = animatedline(axCadence, 'Marker', 'o', 'MarkerFaceColor', 'blue');

 Collect Data from Fitness Monitoring Devices

14-15

https://www.bluetooth.com/specifications/gatt/viewer?attributeXmlFile=org.bluetooth.characteristic.rsc_measurement.xml

Next, read device data in a loop and update the plot as the user progresses from walking to jogging
to running.

for loop = 1:30
 % Get heart rate data
 data = read(hr);
 flag = uint8(data(1));
 heartRateValueFormat = bitget(flag, 1);
 if heartRateValueFormat == 0
 heartRate = data(2);
 else
 heartRate = double(typecast(uint8(data(2:3)), 'uint16'));
 end

 % Get running speed data
 data = read(rsc);
 instantaneousSpeed = double(typecast(uint8(data(2:3)), 'uint16'))/256;
 instantaneousCadence = data(4);

 % Update plot with new data
 addpoints(hSpeed, instantaneousSpeed, heartRate);

14 Bluetooth Low Energy Communication

14-16

 addpoints(hCadence, instantaneousCadence, heartRate);
 drawnow;
end

These plots generally show that higher running speed and cadence values correspond to an increased
heart rate.

Disconnect from Device

Clear the device objects when you are finished working with them.

clear belt shoe

 Collect Data from Fitness Monitoring Devices

14-17

Track Orientation of Bluetooth Low Energy Device
This example shows how to track device orientation with device motion sensor data using Bluetooth®
Low Energy communication.

Hardware Setup

This example uses the Nordic Thingy:52™ device. Nordic Thingy:52 is a Bluetooth Low Energy device
with a 9-axis motion sensor. This device provides a rich set of sensor data including raw
accelerometer, gyroscope, compass, and fused data. This example uses the device calculated rotation
matrix to track the device orientation.

Discover and Connect to Device

First, check that the Bluetooth Low Energy device supports connections by finding it in MATLAB. The
blelist function scans nearby Bluetooth Low Energy peripheral devices that are advertising.

blelist

ans=20×5 table
 Index Name Address RSSI Advertisement
 _____ ________ ______________ ____ _____________

 1 "Thingy" "F2DF635320F6" -54 [1×1 struct]
 2 "" "5AE98748DC34" -73 [1×1 struct]
 3 "" "7A9762B423E0" -76 [1×1 struct]
 4 "" "5E0EAEF93E78" -76 [1×1 struct]
 5 "" "08534F9CC17B" -77 [1×1 struct]
 6 "" "4323693660AC" -79 [1×1 struct]
 7 "" "5386B1B9FCEC" -82 [1×1 struct]
 8 "" "2D132D3ACD33" -83 [1×1 struct]
 9 "" "537E555A0188" -84 [1×1 struct]
 10 "" "237E6384E9BF" -87 [1×1 struct]
 11 "" "2C0CA5F4793C" -88 [1×1 struct]
 12 "" "55D810EF7331" -89 [1×1 struct]
 13 "" "3A01FA8D3D18" -89 [1×1 struct]
 14 "" "2084C6A7DA4D" -90 [1×1 struct]
 15 "" "52DBAB89F58F" -91 [1×1 struct]
 16 "" "528E12038BD6" -91 [1×1 struct]
 ⋮

After the device is found in MATLAB, connect to it by calling ble. Specify the name of the device if it
has a unique name, or specify the device address.

b = ble("Thingy")

b =
 ble with properties:

 Name: "Thingy"
 Address: "F2DF635320F6"
 Connected: 1
 Services: [9×2 table]
 Characteristics: [38×5 table]

Show services and characteristics

14 Bluetooth Low Energy Communication

14-18

Access the Characteristics property of the ble object. The device has the "Motion Service" service,
which contains the "Rotation Matrix" characteristic.

b.Characteristics

ans=38×5 table
 ServiceName ServiceUUID CharacteristicName CharacteristicUUID Attributes
 ______________________________ ______________________________________ __ ______________________________________ ______________

 "Generic Access" "1800" "Device Name" "2A00" {["Read"]}
 "Generic Access" "1800" "Appearance" "2A01" {["Read"]}
 "Generic Access" "1800" "Peripheral Preferred Connection Parameters" "2A04" {["Read"]}
 "Generic Access" "1800" "Central Address Resolution" "2AA6" {["Read"]}
 "Generic Attribute" "1801" "Service Changed" "2A05" {["Indicate"]}
 "Thingy Configuration Service" "EF680100-9B35-4933-9B10-52FFA9740042" "Device Name" "EF680101-9B35-4933-9B10-52FFA9740042" {1×2 string }
 "Thingy Configuration Service" "EF680100-9B35-4933-9B10-52FFA9740042" "Advertising Parameters" "EF680102-9B35-4933-9B10-52FFA9740042" {1×2 string }
 "Thingy Configuration Service" "EF680100-9B35-4933-9B10-52FFA9740042" "Connection Parameters" "EF680104-9B35-4933-9B10-52FFA9740042" {1×2 string }
 "Thingy Configuration Service" "EF680100-9B35-4933-9B10-52FFA9740042" "Eddystone URL" "EF680105-9B35-4933-9B10-52FFA9740042" {1×2 string }
 "Thingy Configuration Service" "EF680100-9B35-4933-9B10-52FFA9740042" "Cloud Token" "EF680106-9B35-4933-9B10-52FFA9740042" {1×2 string }
 "Thingy Configuration Service" "EF680100-9B35-4933-9B10-52FFA9740042" "Firmware Version" "EF680107-9B35-4933-9B10-52FFA9740042" {["Read"]}
 "Thingy Configuration Service" "EF680100-9B35-4933-9B10-52FFA9740042" "MTU Request" "EF680108-9B35-4933-9B10-52FFA9740042" {1×2 string }
 "Thingy Configuration Service" "EF680100-9B35-4933-9B10-52FFA9740042" "NFC Tag Content" "EF680109-9B35-4933-9B10-52FFA9740042" {1×2 string }
 "Weather Station Service" "EF680200-9B35-4933-9B10-52FFA9740042" "Temperature" "EF680201-9B35-4933-9B10-52FFA9740042" {["Notify"]}
 "Weather Station Service" "EF680200-9B35-4933-9B10-52FFA9740042" "Pressure" "EF680202-9B35-4933-9B10-52FFA9740042" {["Notify"]}
 "Weather Station Service" "EF680200-9B35-4933-9B10-52FFA9740042" "Humidity" "EF680203-9B35-4933-9B10-52FFA9740042" {["Notify"]}
 ⋮

Read Sensor Data

Next, create an object for the "Rotation Matrix" characteristic by specifying its service and
characteristic information.

c = characteristic(b, "motion service", "rotation matrix")

c =
 Characteristic with properties:

 Name: "Rotation Matrix"
 UUID: "EF680408-9B35-4933-9B10-52FFA9740042"
 Attributes: "Notify"
 Descriptors: [1x3 table]
 DataAvailableFcn: []

Show descriptors

Then read the current rotation matrix value from the device.

data = read(c)

data = 1×18

 253 63 255 255 15 1 255 255 0 64 8 0 240 254 247 255 253 63

According to the Nordic Thingy:52 documentation, this raw data contains a 3-by-3 matrix where each
element is a 16-bit integer sent in 2 bytes. Each element represents a signed floating point number,

 Track Orientation of Bluetooth Low Energy Device

14-19

https://nordicsemiconductor.github.io/Nordic-Thingy52-FW/documentation/firmware_architecture.html

composed of 2 sign-and-exponent bits and 14 fraction bits. Interpret the raw data as a rotation
matrix.

% Prepare 4-by-4 transform matrix to plot later (assume the device has no
% translation and only rotation)
transformMatrix = eye(4);
% Populate the transform matrix with 9 rotation matrix elements
for row = 1:3
 for column = 1:3
 % Extract the 2 bytes representing the current element in the rotation matrix
 beginIndex = (row-1)*3 + (column-1);
 element = data(2*beginIndex + (1:2));
 transformMatrix(row, column) = double(typecast(uint8(element), 'int16')) / (2^14);
 end
end
% Display the transform matrix
disp(transformMatrix);

 0.9998 -0.0001 0.0165 0
 -0.0001 1.0000 0.0005 0
 -0.0166 -0.0005 0.9998 0
 0 0 0 1.0000

Track Device Orientation

To show live tracking of the device orientation, first plot a 3-D object representing the Nordic
Thingy:52 device.

% Create a 3-D plot
ax = axes('XLim', [-1.5 1.5], 'YLim', [-1.5 1.5], 'ZLim', [-1 2]);
xlabel(ax, 'X-axis');
ylabel(ax, 'Y-axis');
zlabel(ax, 'Z-axis');
% Reverse the 2 axis directions to match the device coordinate system
set(ax, 'Zdir', 'reverse');
set(ax, 'Xdir', 'reverse');
grid on; view(3);

% Define the surface color
color = [0.3010 0.7450 0.9330];

% Create patches for all cube surfaces by specifying the four corners of each surface
top = [-1 -1 1; 1 -1 1; 1 1 1; -1 1 1];
p(1) = patch(top(:,1), top(:,2), top(:,3), color);

bottom = [-1 -1 0; 1 -1 0; 1 1 0; -1 1 0];
p(2) = patch(bottom(:,1), bottom(:,2), bottom(:,3), color);

front = [1 -1 0; 1 1 0; 1 1 1; 1 -1 1];
p(3) = patch(front(:,1), front(:,2), front(:,3), color);

back = [-1 -1 0; -1 1 0; -1 1 1; -1 -1 1];
p(4) = patch(back(:,1), back(:,2), back(:,3), color);

left = [1 -1 0; -1 -1 0; -1 -1 1; 1 -1 1];
p(5) = patch(left(:,1), left(:,2), left(:,3), color);

right = [1 1 0; -1 1 0; -1 1 1; 1 1 1];

14 Bluetooth Low Energy Communication

14-20

p(6) = patch(right(:,1), right(:,2), right(:,3), color);

mark = [0.9 -0.7 -0.01; 0.7 -0.7 -0.01; 0.7 -0.9 -0.01; 0.9 -0.9 -0.01];
p(7) = patch(mark(:,1), mark(:,2), mark(:,3), 'black');

% Set the object transparency
alpha(0.5)

After the 3-D object is created, link the rotation matrix data acquired from the device to the plot by
using hgtransform.

tfObject = hgtransform('Parent', ax);
set(p, 'Parent', tfObject);

With the Transform object, pull device data in a loop and use the data to update the object
orientation. The rotation matrix data sent from the device has precision loss, which can cause matrix
transformation warnings. For this example, ignore the warning by suppressing it. For greater
accuracy, you can use "Euler" or "Quaternion" characteristic data and convert it to a rotation matrix
using Robotics System Toolbox™.

warning('off', 'MATLAB:hg:DiceyTransformMatrix');
for loop = 1:100
 % Acquire device data
 data = read(c);
 % Prepare 4-by-4 transform matrix to plot later
 transformMatrix = eye(4);
 % Populate the transform matrix with 9 rotation matrix elements

 Track Orientation of Bluetooth Low Energy Device

14-21

 for row = 1:3
 for column = 1:3
 % Extract the 2 bytes representing the current element in the rotation matrix
 beginIndex = (row-1)*3 + (column-1);
 element = data(2*beginIndex + (1:2));
 transformMatrix(row, column) = double(typecast(uint8(element), 'int16')) / (2^14);
 end
 end

 % Update plot
 set(tfObject, 'Matrix', transformMatrix);
 pause(0.1);
end

warning('on', 'MATLAB:hg:DiceyTransformMatrix');

Close Device Connection

Clear the device object when you are finished working with it.

clear b

14 Bluetooth Low Energy Communication

14-22

Troubleshooting Bluetooth Low Energy
If you are having issues connecting to your Bluetooth Low Energy peripheral device from MATLAB or
are unable to read or write data, you can try some of the following troubleshooting tips.

For more information about the Bluetooth Low Energy interface, see:

• “Bluetooth Low Energy Communication Overview” on page 14-2
• “Find Your Bluetooth Low Energy Peripheral Devices” on page 14-4
• “Work with Device Characteristics and Descriptors” on page 14-7

Supported Platforms
The Bluetooth Low Energy interface is supported on these platforms:

• macOS 10.13 High Sierra or later
• Windows 10, version 1709 or later

Before trying other troubleshooting steps, make sure your computer is running one of these
platforms.

Device Discovery and Connection
If MATLAB does not detect your built-in or external Bluetooth adapter when you call blelist, try the
following:

• Make sure the adapter supports Bluetooth 4.0 and higher.
• Restart Bluetooth services on your computer.
• Update to the latest device drivers for your adapter.
• Reboot your computer.

If your device does not appear in the blelist output, make sure that you have done the following:

• Power on your peripheral device.
• Bring your peripheral device within range of your computer.
• Disconnect your peripheral device from any other devices or applications first. The output from

blelist shows you only nearby devices that are currently advertising data. If your device is
already connected in another application or in MATLAB, it might not appear in the output.

• Try a larger value for the Timeout parameter in blelist. This increases the amount of time
MATLAB scans for nearby devices. For example, blelist("Timeout",20) searches for nearby
peripheral devices for 20 seconds. The default timeout value is three seconds. If your device
transmits advertisement data less often than once every three seconds, MATLAB might not
capture it.

If your peripheral device powers off or disconnects, the UUID might change when it powers on again
or reconnects. However, the name remains the same in the blelist output. If you are trying to
create a new ble object for the same device, specify the new UUID instead of the name.

 Troubleshooting Bluetooth Low Energy

14-23

On Windows, if a peripheral device has already been paired but the firmware that defines
characteristics and descriptors is changed, ble might fail to connect the device to your computer. To
fix this, disconnect and then reconnect your device to Windows.

If you are unable to create a characteristic object for your Bluetooth Low Energy device on
Windows 10, try pairing your device on Windows before using ble to connect to it in MATLAB. You
can pair to a device in Windows Settings > Devices > Add Bluetooth or other device.

Read and Write Data
Using read(c,'latest') or read(c) inside a callback function for a characteristic with a high
rate can throw an error or block MATLAB for a long time. Instead, use read(c,'oldest') in a
callback function. For an example, see “Read Characteristic Data from a Bluetooth Low Energy
Peripheral Device Using a Callback Function”.

On macOS, some device characteristics require authentication to read or write for the first time.
After you create a ble object, run read or write. Follow the prompts that appear on your computer
to pair your peripheral device.

See Also
ble | blelist | characteristic | descriptor

More About
• “Bluetooth Low Energy Communication Overview” on page 14-2
• “Find Your Bluetooth Low Energy Peripheral Devices” on page 14-4
• “Work with Device Characteristics and Descriptors” on page 14-7

14 Bluetooth Low Energy Communication

14-24

	File Opening, Loading, and Saving
	Supported File Formats for Import and Export
	Methods for Importing Data
	Tools that Import Multiple File Formats
	Importing Specific File Formats
	Importing Data with Low-Level I/O

	Import Images, Audio, and Video Interactively
	Viewing the Contents of a File
	Specifying Variables
	Generating Reusable MATLAB Code

	Import or Export a Sequence of Files
	Save and Load Parts of Variables in MAT-Files
	Save and Load Using the matfile Function
	Load Parts of Variables Dynamically
	Avoid Inadvertently Loading Entire Variables
	Partial Loading and Saving Requires Version 7.3 MAT-Files

	MAT-File Versions
	Overview of MAT-File Versions
	Save to Nondefault MAT-File Version
	Data Compression
	Accelerate Save and Load Operations for Version 7.3 MAT-Files

	Growing Arrays Using matfile Function
	Unexpected Results When Loading Variables Within a Function
	Create Temporary Files

	Text Files
	Import Text Files
	Import Text Files Using the Import Tool
	Import Text Files Using readtable
	Import Data from Text Files as Other Data Types

	Read Text File Data Using Import Tool
	Select Data Interactively
	Import Data from Multiple Text Files

	Import Dates and Times from Text Files
	Import Numeric Data from Text Files into Matrix
	Import Comma-Separated Data
	Import Delimited Numeric Data

	Import Mixed Data from Text File into Table
	Import Block of Mixed Data from Text File into Table or Cell Array
	Write Data to Text Files
	Export Table to Text File
	Export Cell Array to Text File
	Export Numeric Array to Text File

	Write to a Diary File
	Read Collection or Sequence of Text Files
	Import Block of Numeric Data from Text File

	Spreadsheets
	Import Spreadsheets
	Import Spreadsheet Data Using the Import Tool
	Import Spreadsheet Data Using readtable
	Import Spreadsheet Data as Other Data Types

	Read Spreadsheet Data Using Import Tool
	Select Data Interactively
	Import Data from Multiple Spreadsheets
	Paste Data from Clipboard

	Read Spreadsheet Data into Array or Individual Variables
	Read Spreadsheet Data into Table
	Read Collection or Sequence of Spreadsheet Files
	Write Data to Excel Spreadsheets
	Write Tabular Data to Spreadsheet File
	Write Numeric and Text Data to Spreadsheet File
	Disable Warning When Adding New Worksheet
	Format Cells in Excel Files

	Define Import Options for Tables

	Low-Level File I/O
	Import Text Data Files with Low-Level I/O
	Overview
	Reading Data in a Formatted Pattern
	Reading Data Line-by-Line
	Testing for End of File (EOF)
	Opening Files with Different Character Encodings

	Import Binary Data with Low-Level I/O
	Low-Level Functions for Importing Data
	Reading Binary Data in a File
	Reading Portions of a File
	Reading Files Created on Other Systems

	Export to Text Data Files with Low-Level I/O
	Write to Text Files Using fprintf
	Append To or Overwrite Existing Text Files
	Open Files with Different Character Encodings

	Export Binary Data with Low-Level I/O
	Low-Level Functions for Exporting Data
	Write Binary Data to a File
	Overwrite or Append to an Existing Binary File
	Create a File for Use on a Different System
	Write and Read Complex Numbers

	Internet of Things (IoT) Data
	Aggregate Data in ThingSpeak Channel
	Regularize Irregularly Sampled Data
	Plot Data Read from ThingSpeak Channel
	Read ThingSpeak Data and Predict Battery Discharge Time with Linear Fit

	Images
	Importing Images
	Getting Information About Image Files
	Reading Image Data and Metadata from TIFF Files

	Exporting to Images
	Exporting Image Data and Metadata to TIFF Files

	Scientific Data
	Import CDF Files Using Low-Level Functions
	Represent CDF Time Values
	Import CDF Files Using High-Level Functions
	Export to CDF Files
	Map NetCDF API Syntax to MATLAB Syntax
	Import NetCDF Files and OPeNDAP Data
	MATLAB NetCDF Capabilities
	Read from NetCDF File Using High-Level Functions
	Find All Unlimited Dimensions in NetCDF File
	Read from NetCDF File Using Low-Level Functions

	Resolve Errors Reading OPeNDAP Data
	Export to NetCDF Files
	MATLAB NetCDF Capabilities
	Create New NetCDF File From Existing File or Template
	Merge Two NetCDF Files
	Write Data to NetCDF File Using Low-Level Functions

	Importing Flexible Image Transport System (FITS) Files
	Importing HDF5 Files
	Overview
	Using the High-Level HDF5 Functions to Import Data
	Using the Low-Level HDF5 Functions to Import Data

	Exporting to HDF5 Files
	Overview
	Using the MATLAB High-Level HDF5 Functions to Export Data
	Using the MATLAB Low-Level HDF5 Functions to Export Data

	Working with Non-ASCII Characters in HDF5 Files
	Create Dataset and Attribute Names Containing Non-ASCII Characters
	Create Variable-Length String Data Containing Non-ASCII Characters

	Import HDF4 Files Programmatically
	Overview
	Using the MATLAB HDF4 High-Level Functions

	Map HDF4 to MATLAB Syntax
	Import HDF4 Files Using Low-Level Functions
	About HDF4 and HDF-EOS
	Export to HDF4 Files
	Write MATLAB Data to HDF4 File
	Manage HDF4 Identifiers

	Audio and Video
	Read and Write Audio Files
	Record and Play Audio
	Record Audio
	Play Audio
	Record or Play Audio within a Function

	Read Video Files
	Supported Video and Audio File Formats
	Video Data in MATLAB
	Audio Data in MATLAB

	Convert Between Image Sequences and Video

	XML Documents
	Importing XML Documents
	What Is an XML Document Object Model (DOM)?
	Example — Finding Text in an XML File

	Exporting to XML Documents
	Creating an XML File
	Updating an Existing XML File

	Memory-Mapping Data Files
	Overview of Memory-Mapping
	What Is Memory-Mapping?
	Benefits of Memory-Mapping
	When to Use Memory-Mapping
	Maximum Size of a Memory Map
	Byte Ordering

	Map File to Memory
	Create a Simple Memory Map
	Specify Format of Your Mapped Data
	Map Multiple Data Types and Arrays
	Select File to Map

	Read from Mapped File
	Write to Mapped File
	Write to Memory Mapped as Numeric Array
	Write to Memory Mapped as Scalar Structure
	Write to Memory Mapped as Nonscalar Structure
	Syntaxes for Writing to Mapped File
	Work with Copies of Your Mapped Data

	Delete Memory Map
	Ways to Delete a Memory Map
	The Effect of Shared Data Copies On Performance

	Share Memory Between Applications

	Internet File Access and JSON
	Server Authentication
	Server Authentication For RESTful Web Services
	Server Authentication For HTTP Web Services

	Proxy Server Authentication
	RESTful Web Services
	HTTP Web Services
	Use MATLAB Web Preferences For Proxy Server Settings
	Use System Settings For Proxy Server Settings

	MATLAB and Web Services Security
	MATLAB Does Not Verify Certificate Chains

	Download Data from Web Service
	Convert Data from Web Service
	Download Web Page and Files
	Example — Use the webread Function
	Example — Use the websave Function

	Call Web Services from Functions
	Error Messages Concerning Web Service Options

	Send Email
	Perform FTP File Operations
	Display Hyperlinks in the Command Window
	Create Hyperlinks to Web Pages
	Transfer Files Using FTP

	Customize JSON Encoding for MATLAB Classes

	Large Data
	Getting Started with MapReduce
	What Is MapReduce?
	MapReduce Algorithm Phases
	Example MapReduce Calculation

	Write a Map Function
	Role of Map Function in MapReduce
	Requirements for Map Function
	Sample Map Functions

	Write a Reduce Function
	Role of the Reduce Function in MapReduce
	Requirements for Reduce Function
	Sample Reduce Functions

	Speed Up and Deploy MapReduce Using Other Products
	Execution Environment
	Running in Parallel
	Application Deployment

	Build Effective Algorithms with MapReduce
	Debug MapReduce Algorithms
	Set Breakpoint
	Execute mapreduce
	Step Through Map Function
	Step Through Reduce Function

	Analyze Big Data in MATLAB Using MapReduce
	Find Maximum Value with MapReduce
	Compute Mean Value with MapReduce
	Compute Mean by Group Using MapReduce
	Create Histograms Using MapReduce
	Simple Data Subsetting Using MapReduce
	Using MapReduce to Compute Covariance and Related Quantities
	Compute Summary Statistics by Group Using MapReduce
	Using MapReduce to Fit a Logistic Regression Model
	Tall Skinny QR (TSQR) Matrix Factorization Using MapReduce
	Compute Maximum Average HSV of Images with MapReduce
	Getting Started with Datastore
	What Is a Datastore?
	Create and Read from a Datastore

	Select Datastore for File Format or Application
	Datastores for Standard File Formats
	Datastores for Specific Applications
	Custom File Formats
	Nondeterministic Datastores

	Work with Remote Data
	Amazon S3
	Microsoft Azure Storage Blob
	Hadoop Distributed File System

	Read and Analyze Large Tabular Text File
	Read and Analyze Image Files
	Read and Analyze MAT-File with Key-Value Data
	Read and Analyze Hadoop Sequence File
	Develop Custom Datastore
	Overview
	Implement Datastore for Serial Processing
	Add Support for Parallel Processing
	Add Support for Hadoop
	Add Support for Shuffling
	Add Support for Writing Data
	Validate Custom Datastore

	Testing Guidelines for Custom Datastores
	Unit Tests
	Workflow Tests
	Next Steps

	Develop Custom Datastore for DICOM Data
	Developing Custom Datastores
	Class Definition
	Using the DICOMDatastore Class

	Set Up Datastore for Processing on Different Machines or Clusters
	Save Datastore and Load on Different File System Platform
	Process Datastore Using Parallel and Distributed Computing

	Apache Parquet Data Type Mappings
	Numeric Data Types
	Text Data Types
	Date and Time Data Types

	Tall Arrays for Out-of-Memory Data
	What is a Tall Array?
	Benefits of Tall Arrays
	Creating Tall Tables
	Creating Tall Timetables
	Creating Tall Arrays
	Deferred Evaluation
	Evaluation with gather
	Saving, Loading, and Checkpointing Tall Arrays
	Supporting Functions

	Deferred Evaluation of Tall Arrays
	Display of Unevaluated Tall Arrays
	Evaluation with gather
	Resolve Errors with gather
	Example: Calculate Size of Tall Array
	Example: Multi-pass Calculations with Tall Arrays
	Summary of Behavior and Recommendations

	Index and View Tall Array Elements
	Extract Top Rows of Array
	Extract Bottom Rows of Array
	Indexing Tall Arrays
	Extract Tall Table Variables
	Concatenation with Tall Arrays
	Assignment and Deletion with Tall Arrays
	Extract Specified Number of Rows in Sorted Order
	Summarize Tall Array Contents
	Return Subset of Calculation Results

	Histograms of Tall Arrays
	Visualization of Tall Arrays
	Tall Array Plotting Examples

	Grouped Statistics Calculations with Tall Arrays
	Extend Tall Arrays with Other Products
	Statistics and Machine Learning
	Control Where Your Code Runs
	Work with Databases

	Analyze Big Data in MATLAB Using Tall Arrays
	Develop Custom Tall Array Algorithms
	Reasons to Implement Custom Algorithms
	Supported APIs
	Background: Tall Array Blocks
	Single-Step Transformation Operation
	Two-Step Reduction Operation
	Sliding-Window Operations
	Control Output Data Type
	Coding and Performance Tips

	TCP/IP Support in MATLAB
	TCP/IP Communication Overview
	Create a TCP/IP Connection
	Configure Properties for TCP/IP Communication
	Write and Read Data over TCP/IP Interface
	Write Data
	Read Data
	Acquire Data from a Weather Station Server
	Read and Write uint8 Data

	Bluetooth Low Energy Communication
	Bluetooth Low Energy Communication Overview
	Prerequisites and Setup
	Bluetooth Low Energy Concepts
	Services, Characteristics, and Descriptors

	Find Your Bluetooth Low Energy Peripheral Devices
	Scan for Devices
	Connect to a Device

	Work with Device Characteristics and Descriptors
	Access Device Characteristics
	Access Device Descriptors

	Collect Data from Fitness Monitoring Devices
	Track Orientation of Bluetooth Low Energy Device
	Troubleshooting Bluetooth Low Energy
	Supported Platforms
	Device Discovery and Connection
	Read and Write Data

